Metamath Proof Explorer


Definition df-psubsp

Description: Define set of all projective subspaces. Based on definition of subspace in Holland95 p. 212. (Contributed by NM, 2-Oct-2011)

Ref Expression
Assertion df-psubsp PSubSp = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝𝑠𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpsubsp PSubSp
1 vk 𝑘
2 cvv V
3 vs 𝑠
4 3 cv 𝑠
5 catm Atoms
6 1 cv 𝑘
7 6 5 cfv ( Atoms ‘ 𝑘 )
8 4 7 wss 𝑠 ⊆ ( Atoms ‘ 𝑘 )
9 vp 𝑝
10 vq 𝑞
11 vr 𝑟
12 11 cv 𝑟
13 cple le
14 6 13 cfv ( le ‘ 𝑘 )
15 9 cv 𝑝
16 cjn join
17 6 16 cfv ( join ‘ 𝑘 )
18 10 cv 𝑞
19 15 18 17 co ( 𝑝 ( join ‘ 𝑘 ) 𝑞 )
20 12 19 14 wbr 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 )
21 12 4 wcel 𝑟𝑠
22 20 21 wi ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 )
23 22 11 7 wral 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 )
24 23 10 4 wral 𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 )
25 24 9 4 wral 𝑝𝑠𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 )
26 8 25 wa ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝𝑠𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) )
27 26 3 cab { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝𝑠𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) ) }
28 1 2 27 cmpt ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝𝑠𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) ) } )
29 0 28 wceq PSubSp = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝𝑠𝑞𝑠𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟𝑠 ) ) } )