| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpsubsp | ⊢ PSubSp | 
						
							| 1 |  | vk | ⊢ 𝑘 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 | 3 | cv | ⊢ 𝑠 | 
						
							| 5 |  | catm | ⊢ Atoms | 
						
							| 6 | 1 | cv | ⊢ 𝑘 | 
						
							| 7 | 6 5 | cfv | ⊢ ( Atoms ‘ 𝑘 ) | 
						
							| 8 | 4 7 | wss | ⊢ 𝑠  ⊆  ( Atoms ‘ 𝑘 ) | 
						
							| 9 |  | vp | ⊢ 𝑝 | 
						
							| 10 |  | vq | ⊢ 𝑞 | 
						
							| 11 |  | vr | ⊢ 𝑟 | 
						
							| 12 | 11 | cv | ⊢ 𝑟 | 
						
							| 13 |  | cple | ⊢ le | 
						
							| 14 | 6 13 | cfv | ⊢ ( le ‘ 𝑘 ) | 
						
							| 15 | 9 | cv | ⊢ 𝑝 | 
						
							| 16 |  | cjn | ⊢ join | 
						
							| 17 | 6 16 | cfv | ⊢ ( join ‘ 𝑘 ) | 
						
							| 18 | 10 | cv | ⊢ 𝑞 | 
						
							| 19 | 15 18 17 | co | ⊢ ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) | 
						
							| 20 | 12 19 14 | wbr | ⊢ 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) | 
						
							| 21 | 12 4 | wcel | ⊢ 𝑟  ∈  𝑠 | 
						
							| 22 | 20 21 | wi | ⊢ ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 )  →  𝑟  ∈  𝑠 ) | 
						
							| 23 | 22 11 7 | wral | ⊢ ∀ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 )  →  𝑟  ∈  𝑠 ) | 
						
							| 24 | 23 10 4 | wral | ⊢ ∀ 𝑞  ∈  𝑠 ∀ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 )  →  𝑟  ∈  𝑠 ) | 
						
							| 25 | 24 9 4 | wral | ⊢ ∀ 𝑝  ∈  𝑠 ∀ 𝑞  ∈  𝑠 ∀ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 )  →  𝑟  ∈  𝑠 ) | 
						
							| 26 | 8 25 | wa | ⊢ ( 𝑠  ⊆  ( Atoms ‘ 𝑘 )  ∧  ∀ 𝑝  ∈  𝑠 ∀ 𝑞  ∈  𝑠 ∀ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 )  →  𝑟  ∈  𝑠 ) ) | 
						
							| 27 | 26 3 | cab | ⊢ { 𝑠  ∣  ( 𝑠  ⊆  ( Atoms ‘ 𝑘 )  ∧  ∀ 𝑝  ∈  𝑠 ∀ 𝑞  ∈  𝑠 ∀ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 )  →  𝑟  ∈  𝑠 ) ) } | 
						
							| 28 | 1 2 27 | cmpt | ⊢ ( 𝑘  ∈  V  ↦  { 𝑠  ∣  ( 𝑠  ⊆  ( Atoms ‘ 𝑘 )  ∧  ∀ 𝑝  ∈  𝑠 ∀ 𝑞  ∈  𝑠 ∀ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 )  →  𝑟  ∈  𝑠 ) ) } ) | 
						
							| 29 | 0 28 | wceq | ⊢ PSubSp  =  ( 𝑘  ∈  V  ↦  { 𝑠  ∣  ( 𝑠  ⊆  ( Atoms ‘ 𝑘 )  ∧  ∀ 𝑝  ∈  𝑠 ∀ 𝑞  ∈  𝑠 ∀ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 )  →  𝑟  ∈  𝑠 ) ) } ) |