Step |
Hyp |
Ref |
Expression |
0 |
|
cpt |
⊢ ∏t |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cvv |
⊢ V |
3 |
|
ctg |
⊢ topGen |
4 |
|
vx |
⊢ 𝑥 |
5 |
|
vg |
⊢ 𝑔 |
6 |
5
|
cv |
⊢ 𝑔 |
7 |
1
|
cv |
⊢ 𝑓 |
8 |
7
|
cdm |
⊢ dom 𝑓 |
9 |
6 8
|
wfn |
⊢ 𝑔 Fn dom 𝑓 |
10 |
|
vy |
⊢ 𝑦 |
11 |
10
|
cv |
⊢ 𝑦 |
12 |
11 6
|
cfv |
⊢ ( 𝑔 ‘ 𝑦 ) |
13 |
11 7
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
14 |
12 13
|
wcel |
⊢ ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) |
15 |
14 10 8
|
wral |
⊢ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) |
16 |
|
vz |
⊢ 𝑧 |
17 |
|
cfn |
⊢ Fin |
18 |
16
|
cv |
⊢ 𝑧 |
19 |
8 18
|
cdif |
⊢ ( dom 𝑓 ∖ 𝑧 ) |
20 |
13
|
cuni |
⊢ ∪ ( 𝑓 ‘ 𝑦 ) |
21 |
12 20
|
wceq |
⊢ ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) |
22 |
21 10 19
|
wral |
⊢ ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) |
23 |
22 16 17
|
wrex |
⊢ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) |
24 |
9 15 23
|
w3a |
⊢ ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) |
25 |
4
|
cv |
⊢ 𝑥 |
26 |
10 8 12
|
cixp |
⊢ X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) |
27 |
25 26
|
wceq |
⊢ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) |
28 |
24 27
|
wa |
⊢ ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) |
29 |
28 5
|
wex |
⊢ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) |
30 |
29 4
|
cab |
⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } |
31 |
30 3
|
cfv |
⊢ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } ) |
32 |
1 2 31
|
cmpt |
⊢ ( 𝑓 ∈ V ↦ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
33 |
0 32
|
wceq |
⊢ ∏t = ( 𝑓 ∈ V ↦ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } ) ) |