Metamath Proof Explorer


Definition df-pt

Description: Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Assertion df-pt t = ( 𝑓 ∈ V ↦ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓𝑧 ) ( 𝑔𝑦 ) = ( 𝑓𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpt t
1 vf 𝑓
2 cvv V
3 ctg topGen
4 vx 𝑥
5 vg 𝑔
6 5 cv 𝑔
7 1 cv 𝑓
8 7 cdm dom 𝑓
9 6 8 wfn 𝑔 Fn dom 𝑓
10 vy 𝑦
11 10 cv 𝑦
12 11 6 cfv ( 𝑔𝑦 )
13 11 7 cfv ( 𝑓𝑦 )
14 12 13 wcel ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 )
15 14 10 8 wral 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 )
16 vz 𝑧
17 cfn Fin
18 16 cv 𝑧
19 8 18 cdif ( dom 𝑓𝑧 )
20 13 cuni ( 𝑓𝑦 )
21 12 20 wceq ( 𝑔𝑦 ) = ( 𝑓𝑦 )
22 21 10 19 wral 𝑦 ∈ ( dom 𝑓𝑧 ) ( 𝑔𝑦 ) = ( 𝑓𝑦 )
23 22 16 17 wrex 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓𝑧 ) ( 𝑔𝑦 ) = ( 𝑓𝑦 )
24 9 15 23 w3a ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓𝑧 ) ( 𝑔𝑦 ) = ( 𝑓𝑦 ) )
25 4 cv 𝑥
26 10 8 12 cixp X 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 )
27 25 26 wceq 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 )
28 24 27 wa ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓𝑧 ) ( 𝑔𝑦 ) = ( 𝑓𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) )
29 28 5 wex 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓𝑧 ) ( 𝑔𝑦 ) = ( 𝑓𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) )
30 29 4 cab { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓𝑧 ) ( 𝑔𝑦 ) = ( 𝑓𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ) }
31 30 3 cfv ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓𝑧 ) ( 𝑔𝑦 ) = ( 𝑓𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ) } )
32 1 2 31 cmpt ( 𝑓 ∈ V ↦ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓𝑧 ) ( 𝑔𝑦 ) = ( 𝑓𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ) } ) )
33 0 32 wceq t = ( 𝑓 ∈ V ↦ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓𝑧 ) ( 𝑔𝑦 ) = ( 𝑓𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔𝑦 ) ) } ) )