Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
df-pws
Metamath Proof Explorer
Description: Define a structure power, which is just a structure product where all
the factors are the same. (Contributed by Mario Carneiro , 11-Jan-2015)
Ref
Expression
Assertion
df-pws
⊢ ↑s = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( ( Scalar ‘ 𝑟 ) X s ( 𝑖 × { 𝑟 } ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cpws
⊢ ↑s
1
vr
⊢ 𝑟
2
cvv
⊢ V
3
vi
⊢ 𝑖
4
csca
⊢ Scalar
5
1
cv
⊢ 𝑟
6
5 4
cfv
⊢ ( Scalar ‘ 𝑟 )
7
cprds
⊢ X s
8
3
cv
⊢ 𝑖
9
5
csn
⊢ { 𝑟 }
10
8 9
cxp
⊢ ( 𝑖 × { 𝑟 } )
11
6 10 7
co
⊢ ( ( Scalar ‘ 𝑟 ) X s ( 𝑖 × { 𝑟 } ) )
12
1 3 2 2 11
cmpo
⊢ ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( ( Scalar ‘ 𝑟 ) X s ( 𝑖 × { 𝑟 } ) ) )
13
0 12
wceq
⊢ ↑s = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( ( Scalar ‘ 𝑟 ) X s ( 𝑖 × { 𝑟 } ) ) )