Step |
Hyp |
Ref |
Expression |
0 |
|
cq1p |
⊢ quot1p |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
cpl1 |
⊢ Poly1 |
4 |
1
|
cv |
⊢ 𝑟 |
5 |
4 3
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
6 |
|
vp |
⊢ 𝑝 |
7 |
|
cbs |
⊢ Base |
8 |
6
|
cv |
⊢ 𝑝 |
9 |
8 7
|
cfv |
⊢ ( Base ‘ 𝑝 ) |
10 |
|
vb |
⊢ 𝑏 |
11 |
|
vf |
⊢ 𝑓 |
12 |
10
|
cv |
⊢ 𝑏 |
13 |
|
vg |
⊢ 𝑔 |
14 |
|
vq |
⊢ 𝑞 |
15 |
|
cdg1 |
⊢ deg1 |
16 |
4 15
|
cfv |
⊢ ( deg1 ‘ 𝑟 ) |
17 |
11
|
cv |
⊢ 𝑓 |
18 |
|
csg |
⊢ -g |
19 |
8 18
|
cfv |
⊢ ( -g ‘ 𝑝 ) |
20 |
14
|
cv |
⊢ 𝑞 |
21 |
|
cmulr |
⊢ .r |
22 |
8 21
|
cfv |
⊢ ( .r ‘ 𝑝 ) |
23 |
13
|
cv |
⊢ 𝑔 |
24 |
20 23 22
|
co |
⊢ ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) |
25 |
17 24 19
|
co |
⊢ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) |
26 |
25 16
|
cfv |
⊢ ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) |
27 |
|
clt |
⊢ < |
28 |
23 16
|
cfv |
⊢ ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) |
29 |
26 28 27
|
wbr |
⊢ ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) |
30 |
29 14 12
|
crio |
⊢ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) |
31 |
11 13 12 12 30
|
cmpo |
⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) |
32 |
10 9 31
|
csb |
⊢ ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) |
33 |
6 5 32
|
csb |
⊢ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑝 ⦌ ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) |
34 |
1 2 33
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑝 ⦌ ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) ) |
35 |
0 34
|
wceq |
⊢ quot1p = ( 𝑟 ∈ V ↦ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑝 ⦌ ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) ) |