Metamath Proof Explorer


Definition df-q1p

Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg . We actually use the reversed version for better harmony with our divisibility df-dvdsr . (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion df-q1p quot1p = ( 𝑟 ∈ V ↦ ( Poly1𝑟 ) / 𝑝 ( Base ‘ 𝑝 ) / 𝑏 ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑞𝑏 ( ( deg1𝑟 ) ‘ ( 𝑓 ( -g𝑝 ) ( 𝑞 ( .r𝑝 ) 𝑔 ) ) ) < ( ( deg1𝑟 ) ‘ 𝑔 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cq1p quot1p
1 vr 𝑟
2 cvv V
3 cpl1 Poly1
4 1 cv 𝑟
5 4 3 cfv ( Poly1𝑟 )
6 vp 𝑝
7 cbs Base
8 6 cv 𝑝
9 8 7 cfv ( Base ‘ 𝑝 )
10 vb 𝑏
11 vf 𝑓
12 10 cv 𝑏
13 vg 𝑔
14 vq 𝑞
15 cdg1 deg1
16 4 15 cfv ( deg1𝑟 )
17 11 cv 𝑓
18 csg -g
19 8 18 cfv ( -g𝑝 )
20 14 cv 𝑞
21 cmulr .r
22 8 21 cfv ( .r𝑝 )
23 13 cv 𝑔
24 20 23 22 co ( 𝑞 ( .r𝑝 ) 𝑔 )
25 17 24 19 co ( 𝑓 ( -g𝑝 ) ( 𝑞 ( .r𝑝 ) 𝑔 ) )
26 25 16 cfv ( ( deg1𝑟 ) ‘ ( 𝑓 ( -g𝑝 ) ( 𝑞 ( .r𝑝 ) 𝑔 ) ) )
27 clt <
28 23 16 cfv ( ( deg1𝑟 ) ‘ 𝑔 )
29 26 28 27 wbr ( ( deg1𝑟 ) ‘ ( 𝑓 ( -g𝑝 ) ( 𝑞 ( .r𝑝 ) 𝑔 ) ) ) < ( ( deg1𝑟 ) ‘ 𝑔 )
30 29 14 12 crio ( 𝑞𝑏 ( ( deg1𝑟 ) ‘ ( 𝑓 ( -g𝑝 ) ( 𝑞 ( .r𝑝 ) 𝑔 ) ) ) < ( ( deg1𝑟 ) ‘ 𝑔 ) )
31 11 13 12 12 30 cmpo ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑞𝑏 ( ( deg1𝑟 ) ‘ ( 𝑓 ( -g𝑝 ) ( 𝑞 ( .r𝑝 ) 𝑔 ) ) ) < ( ( deg1𝑟 ) ‘ 𝑔 ) ) )
32 10 9 31 csb ( Base ‘ 𝑝 ) / 𝑏 ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑞𝑏 ( ( deg1𝑟 ) ‘ ( 𝑓 ( -g𝑝 ) ( 𝑞 ( .r𝑝 ) 𝑔 ) ) ) < ( ( deg1𝑟 ) ‘ 𝑔 ) ) )
33 6 5 32 csb ( Poly1𝑟 ) / 𝑝 ( Base ‘ 𝑝 ) / 𝑏 ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑞𝑏 ( ( deg1𝑟 ) ‘ ( 𝑓 ( -g𝑝 ) ( 𝑞 ( .r𝑝 ) 𝑔 ) ) ) < ( ( deg1𝑟 ) ‘ 𝑔 ) ) )
34 1 2 33 cmpt ( 𝑟 ∈ V ↦ ( Poly1𝑟 ) / 𝑝 ( Base ‘ 𝑝 ) / 𝑏 ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑞𝑏 ( ( deg1𝑟 ) ‘ ( 𝑓 ( -g𝑝 ) ( 𝑞 ( .r𝑝 ) 𝑔 ) ) ) < ( ( deg1𝑟 ) ‘ 𝑔 ) ) ) )
35 0 34 wceq quot1p = ( 𝑟 ∈ V ↦ ( Poly1𝑟 ) / 𝑝 ( Base ‘ 𝑝 ) / 𝑏 ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑞𝑏 ( ( deg1𝑟 ) ‘ ( 𝑓 ( -g𝑝 ) ( 𝑞 ( .r𝑝 ) 𝑔 ) ) ) < ( ( deg1𝑟 ) ‘ 𝑔 ) ) ) )