Metamath Proof Explorer
Definition df-qs
Description: Define quotient set. R is usually an equivalence relation.
Definition of Enderton p. 58. (Contributed by NM, 23-Jul-1995)
|
|
Ref |
Expression |
|
Assertion |
df-qs |
⊢ ( 𝐴 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cA |
⊢ 𝐴 |
1 |
|
cR |
⊢ 𝑅 |
2 |
0 1
|
cqs |
⊢ ( 𝐴 / 𝑅 ) |
3 |
|
vy |
⊢ 𝑦 |
4 |
|
vx |
⊢ 𝑥 |
5 |
3
|
cv |
⊢ 𝑦 |
6 |
4
|
cv |
⊢ 𝑥 |
7 |
6 1
|
cec |
⊢ [ 𝑥 ] 𝑅 |
8 |
5 7
|
wceq |
⊢ 𝑦 = [ 𝑥 ] 𝑅 |
9 |
8 4 0
|
wrex |
⊢ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 |
10 |
9 3
|
cab |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } |
11 |
2 10
|
wceq |
⊢ ( 𝐴 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } |