Metamath Proof Explorer


Definition df-qs

Description: Define quotient set. R is usually an equivalence relation. Definition of Enderton p. 58. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion df-qs ( 𝐴 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] 𝑅 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cR 𝑅
2 0 1 cqs ( 𝐴 / 𝑅 )
3 vy 𝑦
4 vx 𝑥
5 3 cv 𝑦
6 4 cv 𝑥
7 6 1 cec [ 𝑥 ] 𝑅
8 5 7 wceq 𝑦 = [ 𝑥 ] 𝑅
9 8 4 0 wrex 𝑥𝐴 𝑦 = [ 𝑥 ] 𝑅
10 9 3 cab { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] 𝑅 }
11 2 10 wceq ( 𝐴 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] 𝑅 }