Metamath Proof Explorer


Definition df-qtop

Description: Define the quotient topology given a function f and topology j on the domain of f . (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Assertion df-qtop qTop = ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 𝑗 ) ∣ ( ( 𝑓𝑠 ) ∩ 𝑗 ) ∈ 𝑗 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cqtop qTop
1 vj 𝑗
2 cvv V
3 vf 𝑓
4 vs 𝑠
5 3 cv 𝑓
6 1 cv 𝑗
7 6 cuni 𝑗
8 5 7 cima ( 𝑓 𝑗 )
9 8 cpw 𝒫 ( 𝑓 𝑗 )
10 5 ccnv 𝑓
11 4 cv 𝑠
12 10 11 cima ( 𝑓𝑠 )
13 12 7 cin ( ( 𝑓𝑠 ) ∩ 𝑗 )
14 13 6 wcel ( ( 𝑓𝑠 ) ∩ 𝑗 ) ∈ 𝑗
15 14 4 9 crab { 𝑠 ∈ 𝒫 ( 𝑓 𝑗 ) ∣ ( ( 𝑓𝑠 ) ∩ 𝑗 ) ∈ 𝑗 }
16 1 3 2 2 15 cmpo ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 𝑗 ) ∣ ( ( 𝑓𝑠 ) ∩ 𝑗 ) ∈ 𝑗 } )
17 0 16 wceq qTop = ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 𝑗 ) ∣ ( ( 𝑓𝑠 ) ∩ 𝑗 ) ∈ 𝑗 } )