Step |
Hyp |
Ref |
Expression |
0 |
|
cquot |
⊢ quot |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cply |
⊢ Poly |
3 |
|
cc |
⊢ ℂ |
4 |
3 2
|
cfv |
⊢ ( Poly ‘ ℂ ) |
5 |
|
vg |
⊢ 𝑔 |
6 |
|
c0p |
⊢ 0𝑝 |
7 |
6
|
csn |
⊢ { 0𝑝 } |
8 |
4 7
|
cdif |
⊢ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) |
9 |
|
vq |
⊢ 𝑞 |
10 |
1
|
cv |
⊢ 𝑓 |
11 |
|
cmin |
⊢ − |
12 |
11
|
cof |
⊢ ∘f − |
13 |
5
|
cv |
⊢ 𝑔 |
14 |
|
cmul |
⊢ · |
15 |
14
|
cof |
⊢ ∘f · |
16 |
9
|
cv |
⊢ 𝑞 |
17 |
13 16 15
|
co |
⊢ ( 𝑔 ∘f · 𝑞 ) |
18 |
10 17 12
|
co |
⊢ ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) |
19 |
|
vr |
⊢ 𝑟 |
20 |
19
|
cv |
⊢ 𝑟 |
21 |
20 6
|
wceq |
⊢ 𝑟 = 0𝑝 |
22 |
|
cdgr |
⊢ deg |
23 |
20 22
|
cfv |
⊢ ( deg ‘ 𝑟 ) |
24 |
|
clt |
⊢ < |
25 |
13 22
|
cfv |
⊢ ( deg ‘ 𝑔 ) |
26 |
23 25 24
|
wbr |
⊢ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) |
27 |
21 26
|
wo |
⊢ ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) |
28 |
27 19 18
|
wsbc |
⊢ [ ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) |
29 |
28 9 4
|
crio |
⊢ ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) [ ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ) |
30 |
1 5 4 8 29
|
cmpo |
⊢ ( 𝑓 ∈ ( Poly ‘ ℂ ) , 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ↦ ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) [ ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ) ) |
31 |
0 30
|
wceq |
⊢ quot = ( 𝑓 ∈ ( Poly ‘ ℂ ) , 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ↦ ( ℩ 𝑞 ∈ ( Poly ‘ ℂ ) [ ( 𝑓 ∘f − ( 𝑔 ∘f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ) ) |