Metamath Proof Explorer


Definition df-quot

Description: Define the quotient function on polynomials. This is the q of the expression f = g x. q + r in the division algorithm. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Assertion df-quot quot = ( 𝑓 ∈ ( Poly ‘ ℂ ) , 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ↦ ( 𝑞 ∈ ( Poly ‘ ℂ ) [ ( 𝑓f − ( 𝑔f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cquot quot
1 vf 𝑓
2 cply Poly
3 cc
4 3 2 cfv ( Poly ‘ ℂ )
5 vg 𝑔
6 c0p 0𝑝
7 6 csn { 0𝑝 }
8 4 7 cdif ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } )
9 vq 𝑞
10 1 cv 𝑓
11 cmin
12 11 cof f
13 5 cv 𝑔
14 cmul ·
15 14 cof f ·
16 9 cv 𝑞
17 13 16 15 co ( 𝑔f · 𝑞 )
18 10 17 12 co ( 𝑓f − ( 𝑔f · 𝑞 ) )
19 vr 𝑟
20 19 cv 𝑟
21 20 6 wceq 𝑟 = 0𝑝
22 cdgr deg
23 20 22 cfv ( deg ‘ 𝑟 )
24 clt <
25 13 22 cfv ( deg ‘ 𝑔 )
26 23 25 24 wbr ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 )
27 21 26 wo ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) )
28 27 19 18 wsbc [ ( 𝑓f − ( 𝑔f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) )
29 28 9 4 crio ( 𝑞 ∈ ( Poly ‘ ℂ ) [ ( 𝑓f − ( 𝑔f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) )
30 1 5 4 8 29 cmpo ( 𝑓 ∈ ( Poly ‘ ℂ ) , 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ↦ ( 𝑞 ∈ ( Poly ‘ ℂ ) [ ( 𝑓f − ( 𝑔f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ) )
31 0 30 wceq quot = ( 𝑓 ∈ ( Poly ‘ ℂ ) , 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ↦ ( 𝑞 ∈ ( Poly ‘ ℂ ) [ ( 𝑓f − ( 𝑔f · 𝑞 ) ) / 𝑟 ] ( 𝑟 = 0𝑝 ∨ ( deg ‘ 𝑟 ) < ( deg ‘ 𝑔 ) ) ) )