Metamath Proof Explorer


Definition df-r

Description: Define the set of real numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion df-r ℝ = ( R × { 0R } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cr
1 cnr R
2 c0r 0R
3 2 csn { 0R }
4 1 3 cxp ( R × { 0R } )
5 0 4 wceq ℝ = ( R × { 0R } )