Step |
Hyp |
Ref |
Expression |
0 |
|
cr1p |
⊢ rem1p |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
cbs |
⊢ Base |
4 |
|
cpl1 |
⊢ Poly1 |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5 4
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
7 |
6 3
|
cfv |
⊢ ( Base ‘ ( Poly1 ‘ 𝑟 ) ) |
8 |
|
vb |
⊢ 𝑏 |
9 |
|
vf |
⊢ 𝑓 |
10 |
8
|
cv |
⊢ 𝑏 |
11 |
|
vg |
⊢ 𝑔 |
12 |
9
|
cv |
⊢ 𝑓 |
13 |
|
csg |
⊢ -g |
14 |
6 13
|
cfv |
⊢ ( -g ‘ ( Poly1 ‘ 𝑟 ) ) |
15 |
|
cq1p |
⊢ quot1p |
16 |
5 15
|
cfv |
⊢ ( quot1p ‘ 𝑟 ) |
17 |
11
|
cv |
⊢ 𝑔 |
18 |
12 17 16
|
co |
⊢ ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) |
19 |
|
cmulr |
⊢ .r |
20 |
6 19
|
cfv |
⊢ ( .r ‘ ( Poly1 ‘ 𝑟 ) ) |
21 |
18 17 20
|
co |
⊢ ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) |
22 |
12 21 14
|
co |
⊢ ( 𝑓 ( -g ‘ ( Poly1 ‘ 𝑟 ) ) ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) ) |
23 |
9 11 10 10 22
|
cmpo |
⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1 ‘ 𝑟 ) ) ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) ) ) |
24 |
8 7 23
|
csb |
⊢ ⦋ ( Base ‘ ( Poly1 ‘ 𝑟 ) ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1 ‘ 𝑟 ) ) ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) ) ) |
25 |
1 2 24
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ⦋ ( Base ‘ ( Poly1 ‘ 𝑟 ) ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1 ‘ 𝑟 ) ) ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) ) ) ) |
26 |
0 25
|
wceq |
⊢ rem1p = ( 𝑟 ∈ V ↦ ⦋ ( Base ‘ ( Poly1 ‘ 𝑟 ) ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1 ‘ 𝑟 ) ) ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) ) ) ) |