Metamath Proof Explorer


Definition df-r1p

Description: Define the remainder after dividing two univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion df-r1p rem1p = ( 𝑟 ∈ V ↦ ( Base ‘ ( Poly1𝑟 ) ) / 𝑏 ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1𝑟 ) ) ( ( 𝑓 ( quot1p𝑟 ) 𝑔 ) ( .r ‘ ( Poly1𝑟 ) ) 𝑔 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cr1p rem1p
1 vr 𝑟
2 cvv V
3 cbs Base
4 cpl1 Poly1
5 1 cv 𝑟
6 5 4 cfv ( Poly1𝑟 )
7 6 3 cfv ( Base ‘ ( Poly1𝑟 ) )
8 vb 𝑏
9 vf 𝑓
10 8 cv 𝑏
11 vg 𝑔
12 9 cv 𝑓
13 csg -g
14 6 13 cfv ( -g ‘ ( Poly1𝑟 ) )
15 cq1p quot1p
16 5 15 cfv ( quot1p𝑟 )
17 11 cv 𝑔
18 12 17 16 co ( 𝑓 ( quot1p𝑟 ) 𝑔 )
19 cmulr .r
20 6 19 cfv ( .r ‘ ( Poly1𝑟 ) )
21 18 17 20 co ( ( 𝑓 ( quot1p𝑟 ) 𝑔 ) ( .r ‘ ( Poly1𝑟 ) ) 𝑔 )
22 12 21 14 co ( 𝑓 ( -g ‘ ( Poly1𝑟 ) ) ( ( 𝑓 ( quot1p𝑟 ) 𝑔 ) ( .r ‘ ( Poly1𝑟 ) ) 𝑔 ) )
23 9 11 10 10 22 cmpo ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1𝑟 ) ) ( ( 𝑓 ( quot1p𝑟 ) 𝑔 ) ( .r ‘ ( Poly1𝑟 ) ) 𝑔 ) ) )
24 8 7 23 csb ( Base ‘ ( Poly1𝑟 ) ) / 𝑏 ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1𝑟 ) ) ( ( 𝑓 ( quot1p𝑟 ) 𝑔 ) ( .r ‘ ( Poly1𝑟 ) ) 𝑔 ) ) )
25 1 2 24 cmpt ( 𝑟 ∈ V ↦ ( Base ‘ ( Poly1𝑟 ) ) / 𝑏 ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1𝑟 ) ) ( ( 𝑓 ( quot1p𝑟 ) 𝑔 ) ( .r ‘ ( Poly1𝑟 ) ) 𝑔 ) ) ) )
26 0 25 wceq rem1p = ( 𝑟 ∈ V ↦ ( Base ‘ ( Poly1𝑟 ) ) / 𝑏 ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1𝑟 ) ) ( ( 𝑓 ( quot1p𝑟 ) 𝑔 ) ( .r ‘ ( Poly1𝑟 ) ) 𝑔 ) ) ) )