Metamath Proof Explorer


Definition df-rag

Description: Define the class of right angles. Definition 8.1 of Schwabhauser p. 57. See israg . (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Assertion df-rag ∟G = ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Base ‘ 𝑔 ) ∣ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crag ∟G
1 vg 𝑔
2 cvv V
3 vw 𝑤
4 cbs Base
5 1 cv 𝑔
6 5 4 cfv ( Base ‘ 𝑔 )
7 6 cword Word ( Base ‘ 𝑔 )
8 chash
9 3 cv 𝑤
10 9 8 cfv ( ♯ ‘ 𝑤 )
11 c3 3
12 10 11 wceq ( ♯ ‘ 𝑤 ) = 3
13 cc0 0
14 13 9 cfv ( 𝑤 ‘ 0 )
15 cds dist
16 5 15 cfv ( dist ‘ 𝑔 )
17 c2 2
18 17 9 cfv ( 𝑤 ‘ 2 )
19 14 18 16 co ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) )
20 cmir pInvG
21 5 20 cfv ( pInvG ‘ 𝑔 )
22 c1 1
23 22 9 cfv ( 𝑤 ‘ 1 )
24 23 21 cfv ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) )
25 18 24 cfv ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) )
26 14 25 16 co ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) )
27 19 26 wceq ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) )
28 12 27 wa ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) )
29 28 3 7 crab { 𝑤 ∈ Word ( Base ‘ 𝑔 ) ∣ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) }
30 1 2 29 cmpt ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Base ‘ 𝑔 ) ∣ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) } )
31 0 30 wceq ∟G = ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Base ‘ 𝑔 ) ∣ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) } )