Step |
Hyp |
Ref |
Expression |
0 |
|
crag |
⊢ ∟G |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑔 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
7 |
6
|
cword |
⊢ Word ( Base ‘ 𝑔 ) |
8 |
|
chash |
⊢ ♯ |
9 |
3
|
cv |
⊢ 𝑤 |
10 |
9 8
|
cfv |
⊢ ( ♯ ‘ 𝑤 ) |
11 |
|
c3 |
⊢ 3 |
12 |
10 11
|
wceq |
⊢ ( ♯ ‘ 𝑤 ) = 3 |
13 |
|
cc0 |
⊢ 0 |
14 |
13 9
|
cfv |
⊢ ( 𝑤 ‘ 0 ) |
15 |
|
cds |
⊢ dist |
16 |
5 15
|
cfv |
⊢ ( dist ‘ 𝑔 ) |
17 |
|
c2 |
⊢ 2 |
18 |
17 9
|
cfv |
⊢ ( 𝑤 ‘ 2 ) |
19 |
14 18 16
|
co |
⊢ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) |
20 |
|
cmir |
⊢ pInvG |
21 |
5 20
|
cfv |
⊢ ( pInvG ‘ 𝑔 ) |
22 |
|
c1 |
⊢ 1 |
23 |
22 9
|
cfv |
⊢ ( 𝑤 ‘ 1 ) |
24 |
23 21
|
cfv |
⊢ ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) |
25 |
18 24
|
cfv |
⊢ ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) |
26 |
14 25 16
|
co |
⊢ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) |
27 |
19 26
|
wceq |
⊢ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) |
28 |
12 27
|
wa |
⊢ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) |
29 |
28 3 7
|
crab |
⊢ { 𝑤 ∈ Word ( Base ‘ 𝑔 ) ∣ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) } |
30 |
1 2 29
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Base ‘ 𝑔 ) ∣ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) } ) |
31 |
0 30
|
wceq |
⊢ ∟G = ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Base ‘ 𝑔 ) ∣ ( ( ♯ ‘ 𝑤 ) = 3 ∧ ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( 𝑤 ‘ 2 ) ) = ( ( 𝑤 ‘ 0 ) ( dist ‘ 𝑔 ) ( ( ( pInvG ‘ 𝑔 ) ‘ ( 𝑤 ‘ 1 ) ) ‘ ( 𝑤 ‘ 2 ) ) ) ) } ) |