Step |
Hyp |
Ref |
Expression |
0 |
|
cram |
⊢ Ramsey |
1 |
|
vm |
⊢ 𝑚 |
2 |
|
cn0 |
⊢ ℕ0 |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
cvv |
⊢ V |
5 |
|
vn |
⊢ 𝑛 |
6 |
|
vs |
⊢ 𝑠 |
7 |
5
|
cv |
⊢ 𝑛 |
8 |
|
cle |
⊢ ≤ |
9 |
|
chash |
⊢ ♯ |
10 |
6
|
cv |
⊢ 𝑠 |
11 |
10 9
|
cfv |
⊢ ( ♯ ‘ 𝑠 ) |
12 |
7 11 8
|
wbr |
⊢ 𝑛 ≤ ( ♯ ‘ 𝑠 ) |
13 |
|
vf |
⊢ 𝑓 |
14 |
3
|
cv |
⊢ 𝑟 |
15 |
14
|
cdm |
⊢ dom 𝑟 |
16 |
|
cmap |
⊢ ↑m |
17 |
|
vy |
⊢ 𝑦 |
18 |
10
|
cpw |
⊢ 𝒫 𝑠 |
19 |
17
|
cv |
⊢ 𝑦 |
20 |
19 9
|
cfv |
⊢ ( ♯ ‘ 𝑦 ) |
21 |
1
|
cv |
⊢ 𝑚 |
22 |
20 21
|
wceq |
⊢ ( ♯ ‘ 𝑦 ) = 𝑚 |
23 |
22 17 18
|
crab |
⊢ { 𝑦 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑦 ) = 𝑚 } |
24 |
15 23 16
|
co |
⊢ ( dom 𝑟 ↑m { 𝑦 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑦 ) = 𝑚 } ) |
25 |
|
vc |
⊢ 𝑐 |
26 |
|
vx |
⊢ 𝑥 |
27 |
25
|
cv |
⊢ 𝑐 |
28 |
27 14
|
cfv |
⊢ ( 𝑟 ‘ 𝑐 ) |
29 |
26
|
cv |
⊢ 𝑥 |
30 |
29 9
|
cfv |
⊢ ( ♯ ‘ 𝑥 ) |
31 |
28 30 8
|
wbr |
⊢ ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) |
32 |
29
|
cpw |
⊢ 𝒫 𝑥 |
33 |
13
|
cv |
⊢ 𝑓 |
34 |
19 33
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
35 |
34 27
|
wceq |
⊢ ( 𝑓 ‘ 𝑦 ) = 𝑐 |
36 |
22 35
|
wi |
⊢ ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) |
37 |
36 17 32
|
wral |
⊢ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) |
38 |
31 37
|
wa |
⊢ ( ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) ) |
39 |
38 26 18
|
wrex |
⊢ ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) ) |
40 |
39 25 15
|
wrex |
⊢ ∃ 𝑐 ∈ dom 𝑟 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) ) |
41 |
40 13 24
|
wral |
⊢ ∀ 𝑓 ∈ ( dom 𝑟 ↑m { 𝑦 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑦 ) = 𝑚 } ) ∃ 𝑐 ∈ dom 𝑟 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) ) |
42 |
12 41
|
wi |
⊢ ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( dom 𝑟 ↑m { 𝑦 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑦 ) = 𝑚 } ) ∃ 𝑐 ∈ dom 𝑟 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) ) ) |
43 |
42 6
|
wal |
⊢ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( dom 𝑟 ↑m { 𝑦 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑦 ) = 𝑚 } ) ∃ 𝑐 ∈ dom 𝑟 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) ) ) |
44 |
43 5 2
|
crab |
⊢ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( dom 𝑟 ↑m { 𝑦 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑦 ) = 𝑚 } ) ∃ 𝑐 ∈ dom 𝑟 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) ) ) } |
45 |
|
cxr |
⊢ ℝ* |
46 |
|
clt |
⊢ < |
47 |
44 45 46
|
cinf |
⊢ inf ( { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( dom 𝑟 ↑m { 𝑦 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑦 ) = 𝑚 } ) ∃ 𝑐 ∈ dom 𝑟 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) ) ) } , ℝ* , < ) |
48 |
1 3 2 4 47
|
cmpo |
⊢ ( 𝑚 ∈ ℕ0 , 𝑟 ∈ V ↦ inf ( { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( dom 𝑟 ↑m { 𝑦 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑦 ) = 𝑚 } ) ∃ 𝑐 ∈ dom 𝑟 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) ) ) } , ℝ* , < ) ) |
49 |
0 48
|
wceq |
⊢ Ramsey = ( 𝑚 ∈ ℕ0 , 𝑟 ∈ V ↦ inf ( { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( dom 𝑟 ↑m { 𝑦 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑦 ) = 𝑚 } ) ∃ 𝑐 ∈ dom 𝑟 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑟 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ♯ ‘ 𝑦 ) = 𝑚 → ( 𝑓 ‘ 𝑦 ) = 𝑐 ) ) ) } , ℝ* , < ) ) |