Description: Define the class of all reflexive sets. It is used only by df-refrels . We use subset relation _S ( df-ssr ) here to be able to define converse reflexivity ( df-cnvrefs ), see also the comment of df-ssr . The elements of this class are not necessarily relations (versus df-refrels ).
Note the similarity of Definitions df-refs , df-syms and df-trs , cf. comments of dfrefrels2 . (Contributed by Peter Mazsa, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-refs | ⊢ Refs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crefs | ⊢ Refs | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cid | ⊢ I | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | 3 | cdm | ⊢ dom 𝑥 |
| 5 | 3 | crn | ⊢ ran 𝑥 |
| 6 | 4 5 | cxp | ⊢ ( dom 𝑥 × ran 𝑥 ) |
| 7 | 2 6 | cin | ⊢ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) |
| 8 | cssr | ⊢ S | |
| 9 | 3 6 | cin | ⊢ ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) |
| 10 | 7 9 8 | wbr | ⊢ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) |
| 11 | 10 1 | cab | ⊢ { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |
| 12 | 0 11 | wceq | ⊢ Refs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |