Metamath Proof Explorer


Definition df-reg

Description: Define regular spaces. A space is regular if a point and a closed set can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion df-reg Reg = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 creg Reg
1 vj 𝑗
2 ctop Top
3 vx 𝑥
4 1 cv 𝑗
5 vy 𝑦
6 3 cv 𝑥
7 vz 𝑧
8 5 cv 𝑦
9 7 cv 𝑧
10 8 9 wcel 𝑦𝑧
11 ccl cls
12 4 11 cfv ( cls ‘ 𝑗 )
13 9 12 cfv ( ( cls ‘ 𝑗 ) ‘ 𝑧 )
14 13 6 wss ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥
15 10 14 wa ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 )
16 15 7 4 wrex 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 )
17 16 5 6 wral 𝑦𝑥𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 )
18 17 3 4 wral 𝑥𝑗𝑦𝑥𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 )
19 18 1 2 crab { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) }
20 0 19 wceq Reg = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) }