| Step |
Hyp |
Ref |
Expression |
| 0 |
|
creg |
⊢ Reg |
| 1 |
|
vj |
⊢ 𝑗 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
1
|
cv |
⊢ 𝑗 |
| 5 |
|
vy |
⊢ 𝑦 |
| 6 |
3
|
cv |
⊢ 𝑥 |
| 7 |
|
vz |
⊢ 𝑧 |
| 8 |
5
|
cv |
⊢ 𝑦 |
| 9 |
7
|
cv |
⊢ 𝑧 |
| 10 |
8 9
|
wcel |
⊢ 𝑦 ∈ 𝑧 |
| 11 |
|
ccl |
⊢ cls |
| 12 |
4 11
|
cfv |
⊢ ( cls ‘ 𝑗 ) |
| 13 |
9 12
|
cfv |
⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) |
| 14 |
13 6
|
wss |
⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 |
| 15 |
10 14
|
wa |
⊢ ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 16 |
15 7 4
|
wrex |
⊢ ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 17 |
16 5 6
|
wral |
⊢ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 18 |
17 3 4
|
wral |
⊢ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 19 |
18 1 2
|
crab |
⊢ { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |
| 20 |
0 19
|
wceq |
⊢ Reg = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |