Metamath Proof Explorer


Definition df-repr

Description: The representations of a nonnegative m as the sum of s nonnegative integers from a set b . Cf. Definition of Nathanson p. 123. (Contributed by Thierry Arnoux, 1-Dec-2021)

Ref Expression
Assertion df-repr repr = ( 𝑠 ∈ ℕ0 ↦ ( 𝑏 ∈ 𝒫 ℕ , 𝑚 ∈ ℤ ↦ { 𝑐 ∈ ( 𝑏m ( 0 ..^ 𝑠 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐𝑎 ) = 𝑚 } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crepr repr
1 vs 𝑠
2 cn0 0
3 vb 𝑏
4 cn
5 4 cpw 𝒫 ℕ
6 vm 𝑚
7 cz
8 vc 𝑐
9 3 cv 𝑏
10 cmap m
11 cc0 0
12 cfzo ..^
13 1 cv 𝑠
14 11 13 12 co ( 0 ..^ 𝑠 )
15 9 14 10 co ( 𝑏m ( 0 ..^ 𝑠 ) )
16 va 𝑎
17 8 cv 𝑐
18 16 cv 𝑎
19 18 17 cfv ( 𝑐𝑎 )
20 14 19 16 csu Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐𝑎 )
21 6 cv 𝑚
22 20 21 wceq Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐𝑎 ) = 𝑚
23 22 8 15 crab { 𝑐 ∈ ( 𝑏m ( 0 ..^ 𝑠 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐𝑎 ) = 𝑚 }
24 3 6 5 7 23 cmpo ( 𝑏 ∈ 𝒫 ℕ , 𝑚 ∈ ℤ ↦ { 𝑐 ∈ ( 𝑏m ( 0 ..^ 𝑠 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐𝑎 ) = 𝑚 } )
25 1 2 24 cmpt ( 𝑠 ∈ ℕ0 ↦ ( 𝑏 ∈ 𝒫 ℕ , 𝑚 ∈ ℤ ↦ { 𝑐 ∈ ( 𝑏m ( 0 ..^ 𝑠 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐𝑎 ) = 𝑚 } ) )
26 0 25 wceq repr = ( 𝑠 ∈ ℕ0 ↦ ( 𝑏 ∈ 𝒫 ℕ , 𝑚 ∈ ℤ ↦ { 𝑐 ∈ ( 𝑏m ( 0 ..^ 𝑠 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐𝑎 ) = 𝑚 } ) )