Step |
Hyp |
Ref |
Expression |
0 |
|
crepr |
⊢ repr |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cn0 |
⊢ ℕ0 |
3 |
|
vb |
⊢ 𝑏 |
4 |
|
cn |
⊢ ℕ |
5 |
4
|
cpw |
⊢ 𝒫 ℕ |
6 |
|
vm |
⊢ 𝑚 |
7 |
|
cz |
⊢ ℤ |
8 |
|
vc |
⊢ 𝑐 |
9 |
3
|
cv |
⊢ 𝑏 |
10 |
|
cmap |
⊢ ↑m |
11 |
|
cc0 |
⊢ 0 |
12 |
|
cfzo |
⊢ ..^ |
13 |
1
|
cv |
⊢ 𝑠 |
14 |
11 13 12
|
co |
⊢ ( 0 ..^ 𝑠 ) |
15 |
9 14 10
|
co |
⊢ ( 𝑏 ↑m ( 0 ..^ 𝑠 ) ) |
16 |
|
va |
⊢ 𝑎 |
17 |
8
|
cv |
⊢ 𝑐 |
18 |
16
|
cv |
⊢ 𝑎 |
19 |
18 17
|
cfv |
⊢ ( 𝑐 ‘ 𝑎 ) |
20 |
14 19 16
|
csu |
⊢ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐 ‘ 𝑎 ) |
21 |
6
|
cv |
⊢ 𝑚 |
22 |
20 21
|
wceq |
⊢ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐 ‘ 𝑎 ) = 𝑚 |
23 |
22 8 15
|
crab |
⊢ { 𝑐 ∈ ( 𝑏 ↑m ( 0 ..^ 𝑠 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐 ‘ 𝑎 ) = 𝑚 } |
24 |
3 6 5 7 23
|
cmpo |
⊢ ( 𝑏 ∈ 𝒫 ℕ , 𝑚 ∈ ℤ ↦ { 𝑐 ∈ ( 𝑏 ↑m ( 0 ..^ 𝑠 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐 ‘ 𝑎 ) = 𝑚 } ) |
25 |
1 2 24
|
cmpt |
⊢ ( 𝑠 ∈ ℕ0 ↦ ( 𝑏 ∈ 𝒫 ℕ , 𝑚 ∈ ℤ ↦ { 𝑐 ∈ ( 𝑏 ↑m ( 0 ..^ 𝑠 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐 ‘ 𝑎 ) = 𝑚 } ) ) |
26 |
0 25
|
wceq |
⊢ repr = ( 𝑠 ∈ ℕ0 ↦ ( 𝑏 ∈ 𝒫 ℕ , 𝑚 ∈ ℤ ↦ { 𝑐 ∈ ( 𝑏 ↑m ( 0 ..^ 𝑠 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑠 ) ( 𝑐 ‘ 𝑎 ) = 𝑚 } ) ) |