Step |
Hyp |
Ref |
Expression |
0 |
|
cresc |
⊢ ↾cat |
1 |
|
vc |
⊢ 𝑐 |
2 |
|
cvv |
⊢ V |
3 |
|
vh |
⊢ ℎ |
4 |
1
|
cv |
⊢ 𝑐 |
5 |
|
cress |
⊢ ↾s |
6 |
3
|
cv |
⊢ ℎ |
7 |
6
|
cdm |
⊢ dom ℎ |
8 |
7
|
cdm |
⊢ dom dom ℎ |
9 |
4 8 5
|
co |
⊢ ( 𝑐 ↾s dom dom ℎ ) |
10 |
|
csts |
⊢ sSet |
11 |
|
chom |
⊢ Hom |
12 |
|
cnx |
⊢ ndx |
13 |
12 11
|
cfv |
⊢ ( Hom ‘ ndx ) |
14 |
13 6
|
cop |
⊢ 〈 ( Hom ‘ ndx ) , ℎ 〉 |
15 |
9 14 10
|
co |
⊢ ( ( 𝑐 ↾s dom dom ℎ ) sSet 〈 ( Hom ‘ ndx ) , ℎ 〉 ) |
16 |
1 3 2 2 15
|
cmpo |
⊢ ( 𝑐 ∈ V , ℎ ∈ V ↦ ( ( 𝑐 ↾s dom dom ℎ ) sSet 〈 ( Hom ‘ ndx ) , ℎ 〉 ) ) |
17 |
0 16
|
wceq |
⊢ ↾cat = ( 𝑐 ∈ V , ℎ ∈ V ↦ ( ( 𝑐 ↾s dom dom ℎ ) sSet 〈 ( Hom ‘ ndx ) , ℎ 〉 ) ) |