Metamath Proof Explorer


Definition df-resc

Description: Define the restriction of a category to a given set of arrows. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Assertion df-resc cat = ( 𝑐 ∈ V , ∈ V ↦ ( ( 𝑐s dom dom ) sSet ⟨ ( Hom ‘ ndx ) , ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cresc cat
1 vc 𝑐
2 cvv V
3 vh
4 1 cv 𝑐
5 cress s
6 3 cv
7 6 cdm dom
8 7 cdm dom dom
9 4 8 5 co ( 𝑐s dom dom )
10 csts sSet
11 chom Hom
12 cnx ndx
13 12 11 cfv ( Hom ‘ ndx )
14 13 6 cop ⟨ ( Hom ‘ ndx ) ,
15 9 14 10 co ( ( 𝑐s dom dom ) sSet ⟨ ( Hom ‘ ndx ) , ⟩ )
16 1 3 2 2 15 cmpo ( 𝑐 ∈ V , ∈ V ↦ ( ( 𝑐s dom dom ) sSet ⟨ ( Hom ‘ ndx ) , ⟩ ) )
17 0 16 wceq cat = ( 𝑐 ∈ V , ∈ V ↦ ( ( 𝑐s dom dom ) sSet ⟨ ( Hom ‘ ndx ) , ⟩ ) )