Metamath Proof Explorer


Definition df-resf

Description: Define the restriction of a functor to a subcategory (analogue of df-res ). (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion df-resf f = ( 𝑓 ∈ V , ∈ V ↦ ⟨ ( ( 1st𝑓 ) ↾ dom dom ) , ( 𝑥 ∈ dom ↦ ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) ) ) ⟩ )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cresf f
1 vf 𝑓
2 cvv V
3 vh
4 c1st 1st
5 1 cv 𝑓
6 5 4 cfv ( 1st𝑓 )
7 3 cv
8 7 cdm dom
9 8 cdm dom dom
10 6 9 cres ( ( 1st𝑓 ) ↾ dom dom )
11 vx 𝑥
12 c2nd 2nd
13 5 12 cfv ( 2nd𝑓 )
14 11 cv 𝑥
15 14 13 cfv ( ( 2nd𝑓 ) ‘ 𝑥 )
16 14 7 cfv ( 𝑥 )
17 15 16 cres ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) )
18 11 8 17 cmpt ( 𝑥 ∈ dom ↦ ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) ) )
19 10 18 cop ⟨ ( ( 1st𝑓 ) ↾ dom dom ) , ( 𝑥 ∈ dom ↦ ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) ) ) ⟩
20 1 3 2 2 19 cmpo ( 𝑓 ∈ V , ∈ V ↦ ⟨ ( ( 1st𝑓 ) ↾ dom dom ) , ( 𝑥 ∈ dom ↦ ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) ) ) ⟩ )
21 0 20 wceq f = ( 𝑓 ∈ V , ∈ V ↦ ⟨ ( ( 1st𝑓 ) ↾ dom dom ) , ( 𝑥 ∈ dom ↦ ( ( ( 2nd𝑓 ) ‘ 𝑥 ) ↾ ( 𝑥 ) ) ) ⟩ )