Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
df-rest
Metamath Proof Explorer
Description: Function returning the subspace topology induced by the topology y
and the set x . (Contributed by FL , 20-Sep-2010) (Revised by Mario Carneiro , 1-May-2015)
Ref
Expression
Assertion
df-rest
⊢ ↾t = ( 𝑗 ∈ V , 𝑥 ∈ V ↦ ran ( 𝑦 ∈ 𝑗 ↦ ( 𝑦 ∩ 𝑥 ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
crest
⊢ ↾t
1
vj
⊢ 𝑗
2
cvv
⊢ V
3
vx
⊢ 𝑥
4
vy
⊢ 𝑦
5
1
cv
⊢ 𝑗
6
4
cv
⊢ 𝑦
7
3
cv
⊢ 𝑥
8
6 7
cin
⊢ ( 𝑦 ∩ 𝑥 )
9
4 5 8
cmpt
⊢ ( 𝑦 ∈ 𝑗 ↦ ( 𝑦 ∩ 𝑥 ) )
10
9
crn
⊢ ran ( 𝑦 ∈ 𝑗 ↦ ( 𝑦 ∩ 𝑥 ) )
11
1 3 2 2 10
cmpo
⊢ ( 𝑗 ∈ V , 𝑥 ∈ V ↦ ran ( 𝑦 ∈ 𝑗 ↦ ( 𝑦 ∩ 𝑥 ) ) )
12
0 11
wceq
⊢ ↾t = ( 𝑗 ∈ V , 𝑥 ∈ V ↦ ran ( 𝑦 ∈ 𝑗 ↦ ( 𝑦 ∩ 𝑥 ) ) )