Metamath Proof Explorer


Definition df-reu

Description: Define restricted existential uniqueness.

Note: This notation is most often used to express that ph holds for exactly one element of a given class A . For this reading F/_ x A is required, though, for example, asserted when x and A are disjoint.

Should instead A depend on x , you rather assert exactly one x fulfilling ph happens to be contained in the corresponding A ( x ) . This interpretation is rarely needed (see also df-ral ). (Contributed by NM, 22-Nov-1994)

Ref Expression
Assertion df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 cA 𝐴
2 wph 𝜑
3 2 0 1 wreu ∃! 𝑥𝐴 𝜑
4 0 cv 𝑥
5 4 1 wcel 𝑥𝐴
6 5 2 wa ( 𝑥𝐴𝜑 )
7 6 0 weu ∃! 𝑥 ( 𝑥𝐴𝜑 )
8 3 7 wb ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )