Metamath Proof Explorer


Definition df-rgspn

Description: The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014)

Ref Expression
Assertion df-rgspn RingSpan = ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ { 𝑡 ∈ ( SubRing ‘ 𝑤 ) ∣ 𝑠𝑡 } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crgspn RingSpan
1 vw 𝑤
2 cvv V
3 vs 𝑠
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 6 cpw 𝒫 ( Base ‘ 𝑤 )
8 vt 𝑡
9 csubrg SubRing
10 5 9 cfv ( SubRing ‘ 𝑤 )
11 3 cv 𝑠
12 8 cv 𝑡
13 11 12 wss 𝑠𝑡
14 13 8 10 crab { 𝑡 ∈ ( SubRing ‘ 𝑤 ) ∣ 𝑠𝑡 }
15 14 cint { 𝑡 ∈ ( SubRing ‘ 𝑤 ) ∣ 𝑠𝑡 }
16 3 7 15 cmpt ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ { 𝑡 ∈ ( SubRing ‘ 𝑤 ) ∣ 𝑠𝑡 } )
17 1 2 16 cmpt ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ { 𝑡 ∈ ( SubRing ‘ 𝑤 ) ∣ 𝑠𝑡 } ) )
18 0 17 wceq RingSpan = ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ { 𝑡 ∈ ( SubRing ‘ 𝑤 ) ∣ 𝑠𝑡 } ) )