| Step | Hyp | Ref | Expression | 
						
							| 0 |  | crh | ⊢  RingHom | 
						
							| 1 |  | vr | ⊢ 𝑟 | 
						
							| 2 |  | crg | ⊢ Ring | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑟 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑟 ) | 
						
							| 7 |  | vv | ⊢ 𝑣 | 
						
							| 8 | 3 | cv | ⊢ 𝑠 | 
						
							| 9 | 8 4 | cfv | ⊢ ( Base ‘ 𝑠 ) | 
						
							| 10 |  | vw | ⊢ 𝑤 | 
						
							| 11 |  | vf | ⊢ 𝑓 | 
						
							| 12 | 10 | cv | ⊢ 𝑤 | 
						
							| 13 |  | cmap | ⊢  ↑m | 
						
							| 14 | 7 | cv | ⊢ 𝑣 | 
						
							| 15 | 12 14 13 | co | ⊢ ( 𝑤  ↑m  𝑣 ) | 
						
							| 16 | 11 | cv | ⊢ 𝑓 | 
						
							| 17 |  | cur | ⊢ 1r | 
						
							| 18 | 5 17 | cfv | ⊢ ( 1r ‘ 𝑟 ) | 
						
							| 19 | 18 16 | cfv | ⊢ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) | 
						
							| 20 | 8 17 | cfv | ⊢ ( 1r ‘ 𝑠 ) | 
						
							| 21 | 19 20 | wceq | ⊢ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) )  =  ( 1r ‘ 𝑠 ) | 
						
							| 22 |  | vx | ⊢ 𝑥 | 
						
							| 23 |  | vy | ⊢ 𝑦 | 
						
							| 24 | 22 | cv | ⊢ 𝑥 | 
						
							| 25 |  | cplusg | ⊢ +g | 
						
							| 26 | 5 25 | cfv | ⊢ ( +g ‘ 𝑟 ) | 
						
							| 27 | 23 | cv | ⊢ 𝑦 | 
						
							| 28 | 24 27 26 | co | ⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) | 
						
							| 29 | 28 16 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) | 
						
							| 30 | 24 16 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) | 
						
							| 31 | 8 25 | cfv | ⊢ ( +g ‘ 𝑠 ) | 
						
							| 32 | 27 16 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) | 
						
							| 33 | 30 32 31 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 34 | 29 33 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 35 |  | cmulr | ⊢ .r | 
						
							| 36 | 5 35 | cfv | ⊢ ( .r ‘ 𝑟 ) | 
						
							| 37 | 24 27 36 | co | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) | 
						
							| 38 | 37 16 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) | 
						
							| 39 | 8 35 | cfv | ⊢ ( .r ‘ 𝑠 ) | 
						
							| 40 | 30 32 39 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 41 | 38 40 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 42 | 34 41 | wa | ⊢ ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 43 | 42 23 14 | wral | ⊢ ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 44 | 43 22 14 | wral | ⊢ ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 45 | 21 44 | wa | ⊢ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) )  =  ( 1r ‘ 𝑠 )  ∧  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 46 | 45 11 15 | crab | ⊢ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) )  =  ( 1r ‘ 𝑠 )  ∧  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } | 
						
							| 47 | 10 9 46 | csb | ⊢ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) )  =  ( 1r ‘ 𝑠 )  ∧  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } | 
						
							| 48 | 7 6 47 | csb | ⊢ ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) )  =  ( 1r ‘ 𝑠 )  ∧  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } | 
						
							| 49 | 1 3 2 2 48 | cmpo | ⊢ ( 𝑟  ∈  Ring ,  𝑠  ∈  Ring  ↦  ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) )  =  ( 1r ‘ 𝑠 )  ∧  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) | 
						
							| 50 | 0 49 | wceq | ⊢  RingHom   =  ( 𝑟  ∈  Ring ,  𝑠  ∈  Ring  ↦  ⦋ ( Base ‘ 𝑟 )  /  𝑣 ⦌ ⦋ ( Base ‘ 𝑠 )  /  𝑤 ⦌ { 𝑓  ∈  ( 𝑤  ↑m  𝑣 )  ∣  ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) )  =  ( 1r ‘ 𝑠 )  ∧  ∀ 𝑥  ∈  𝑣 ∀ 𝑦  ∈  𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |