Description: Define the set of ring isomorphisms from r to s . (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rim | ⊢ RingIso = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | crs | ⊢ RingIso | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | vf | ⊢ 𝑓 | |
| 5 | 1 | cv | ⊢ 𝑟 | 
| 6 | crh | ⊢ RingHom | |
| 7 | 3 | cv | ⊢ 𝑠 | 
| 8 | 5 7 6 | co | ⊢ ( 𝑟 RingHom 𝑠 ) | 
| 9 | 4 | cv | ⊢ 𝑓 | 
| 10 | 9 | ccnv | ⊢ ◡ 𝑓 | 
| 11 | 7 5 6 | co | ⊢ ( 𝑠 RingHom 𝑟 ) | 
| 12 | 10 11 | wcel | ⊢ ◡ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) | 
| 13 | 12 4 8 | crab | ⊢ { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } | 
| 14 | 1 3 2 2 13 | cmpo | ⊢ ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } ) | 
| 15 | 0 14 | wceq | ⊢ RingIso = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } ) |