| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crg |
⊢ Ring |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cgrp |
⊢ Grp |
| 3 |
|
cmgp |
⊢ mulGrp |
| 4 |
1
|
cv |
⊢ 𝑓 |
| 5 |
4 3
|
cfv |
⊢ ( mulGrp ‘ 𝑓 ) |
| 6 |
|
cmnd |
⊢ Mnd |
| 7 |
5 6
|
wcel |
⊢ ( mulGrp ‘ 𝑓 ) ∈ Mnd |
| 8 |
|
cbs |
⊢ Base |
| 9 |
4 8
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 10 |
|
vr |
⊢ 𝑟 |
| 11 |
|
cplusg |
⊢ +g |
| 12 |
4 11
|
cfv |
⊢ ( +g ‘ 𝑓 ) |
| 13 |
|
vp |
⊢ 𝑝 |
| 14 |
|
cmulr |
⊢ .r |
| 15 |
4 14
|
cfv |
⊢ ( .r ‘ 𝑓 ) |
| 16 |
|
vt |
⊢ 𝑡 |
| 17 |
|
vx |
⊢ 𝑥 |
| 18 |
10
|
cv |
⊢ 𝑟 |
| 19 |
|
vy |
⊢ 𝑦 |
| 20 |
|
vz |
⊢ 𝑧 |
| 21 |
17
|
cv |
⊢ 𝑥 |
| 22 |
16
|
cv |
⊢ 𝑡 |
| 23 |
19
|
cv |
⊢ 𝑦 |
| 24 |
13
|
cv |
⊢ 𝑝 |
| 25 |
20
|
cv |
⊢ 𝑧 |
| 26 |
23 25 24
|
co |
⊢ ( 𝑦 𝑝 𝑧 ) |
| 27 |
21 26 22
|
co |
⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) |
| 28 |
21 23 22
|
co |
⊢ ( 𝑥 𝑡 𝑦 ) |
| 29 |
21 25 22
|
co |
⊢ ( 𝑥 𝑡 𝑧 ) |
| 30 |
28 29 24
|
co |
⊢ ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) |
| 31 |
27 30
|
wceq |
⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) |
| 32 |
21 23 24
|
co |
⊢ ( 𝑥 𝑝 𝑦 ) |
| 33 |
32 25 22
|
co |
⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) |
| 34 |
23 25 22
|
co |
⊢ ( 𝑦 𝑡 𝑧 ) |
| 35 |
29 34 24
|
co |
⊢ ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) |
| 36 |
33 35
|
wceq |
⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) |
| 37 |
31 36
|
wa |
⊢ ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 38 |
37 20 18
|
wral |
⊢ ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 39 |
38 19 18
|
wral |
⊢ ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 40 |
39 17 18
|
wral |
⊢ ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 41 |
40 16 15
|
wsbc |
⊢ [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 42 |
41 13 12
|
wsbc |
⊢ [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 43 |
42 10 9
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
| 44 |
7 43
|
wa |
⊢ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) |
| 45 |
44 1 2
|
crab |
⊢ { 𝑓 ∈ Grp ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } |
| 46 |
0 45
|
wceq |
⊢ Ring = { 𝑓 ∈ Grp ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑟 ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } |