Metamath Proof Explorer


Definition df-ring

Description: Define class of all (unital) rings. A unital ring is a set equipped with two everywhere-defined internal operations, whose first one is an additive group structure and the second one is a multiplicative monoid structure, and where the addition is left- and right-distributive for the multiplication. Definition 1 in BourbakiAlg1 p. 92 or definition of a ring with identity in part Preliminaries of Roman p. 19. So that the additive structure must be abelian (see ringcom ), care must be taken that in the case of a non-unital ring, the commutativity of addition must be postulated and cannot be proved from the other conditions. (Contributed by NM, 18-Oct-2012) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion df-ring Ring = { 𝑓 ∈ Grp ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ]𝑥𝑟𝑦𝑟𝑧𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 crg Ring
1 vf 𝑓
2 cgrp Grp
3 cmgp mulGrp
4 1 cv 𝑓
5 4 3 cfv ( mulGrp ‘ 𝑓 )
6 cmnd Mnd
7 5 6 wcel ( mulGrp ‘ 𝑓 ) ∈ Mnd
8 cbs Base
9 4 8 cfv ( Base ‘ 𝑓 )
10 vr 𝑟
11 cplusg +g
12 4 11 cfv ( +g𝑓 )
13 vp 𝑝
14 cmulr .r
15 4 14 cfv ( .r𝑓 )
16 vt 𝑡
17 vx 𝑥
18 10 cv 𝑟
19 vy 𝑦
20 vz 𝑧
21 17 cv 𝑥
22 16 cv 𝑡
23 19 cv 𝑦
24 13 cv 𝑝
25 20 cv 𝑧
26 23 25 24 co ( 𝑦 𝑝 𝑧 )
27 21 26 22 co ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )
28 21 23 22 co ( 𝑥 𝑡 𝑦 )
29 21 25 22 co ( 𝑥 𝑡 𝑧 )
30 28 29 24 co ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )
31 27 30 wceq ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )
32 21 23 24 co ( 𝑥 𝑝 𝑦 )
33 32 25 22 co ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )
34 23 25 22 co ( 𝑦 𝑡 𝑧 )
35 29 34 24 co ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) )
36 33 35 wceq ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) )
37 31 36 wa ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )
38 37 20 18 wral 𝑧𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )
39 38 19 18 wral 𝑦𝑟𝑧𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )
40 39 17 18 wral 𝑥𝑟𝑦𝑟𝑧𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )
41 40 16 15 wsbc [ ( .r𝑓 ) / 𝑡 ]𝑥𝑟𝑦𝑟𝑧𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )
42 41 13 12 wsbc [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ]𝑥𝑟𝑦𝑟𝑧𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )
43 42 10 9 wsbc [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ]𝑥𝑟𝑦𝑟𝑧𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )
44 7 43 wa ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ]𝑥𝑟𝑦𝑟𝑧𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) )
45 44 1 2 crab { 𝑓 ∈ Grp ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ]𝑥𝑟𝑦𝑟𝑧𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) }
46 0 45 wceq Ring = { 𝑓 ∈ Grp ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g𝑓 ) / 𝑝 ] [ ( .r𝑓 ) / 𝑡 ]𝑥𝑟𝑦𝑟𝑧𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) }