| Step | Hyp | Ref | Expression | 
						
							| 0 |  | crisc | ⊢  ≃𝑟 | 
						
							| 1 |  | vr | ⊢ 𝑟 | 
						
							| 2 |  | vs | ⊢ 𝑠 | 
						
							| 3 | 1 | cv | ⊢ 𝑟 | 
						
							| 4 |  | crngo | ⊢ RingOps | 
						
							| 5 | 3 4 | wcel | ⊢ 𝑟  ∈  RingOps | 
						
							| 6 | 2 | cv | ⊢ 𝑠 | 
						
							| 7 | 6 4 | wcel | ⊢ 𝑠  ∈  RingOps | 
						
							| 8 | 5 7 | wa | ⊢ ( 𝑟  ∈  RingOps  ∧  𝑠  ∈  RingOps ) | 
						
							| 9 |  | vf | ⊢ 𝑓 | 
						
							| 10 | 9 | cv | ⊢ 𝑓 | 
						
							| 11 |  | crngoiso | ⊢  RingOpsIso | 
						
							| 12 | 3 6 11 | co | ⊢ ( 𝑟  RingOpsIso  𝑠 ) | 
						
							| 13 | 10 12 | wcel | ⊢ 𝑓  ∈  ( 𝑟  RingOpsIso  𝑠 ) | 
						
							| 14 | 13 9 | wex | ⊢ ∃ 𝑓 𝑓  ∈  ( 𝑟  RingOpsIso  𝑠 ) | 
						
							| 15 | 8 14 | wa | ⊢ ( ( 𝑟  ∈  RingOps  ∧  𝑠  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑟  RingOpsIso  𝑠 ) ) | 
						
							| 16 | 15 1 2 | copab | ⊢ { 〈 𝑟 ,  𝑠 〉  ∣  ( ( 𝑟  ∈  RingOps  ∧  𝑠  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑟  RingOpsIso  𝑠 ) ) } | 
						
							| 17 | 0 16 | wceq | ⊢  ≃𝑟   =  { 〈 𝑟 ,  𝑠 〉  ∣  ( ( 𝑟  ∈  RingOps  ∧  𝑠  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑟  RingOpsIso  𝑠 ) ) } |