Metamath Proof Explorer


Definition df-risc

Description: Define the ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Assertion df-risc 𝑟 = { ⟨ 𝑟 , 𝑠 ⟩ ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RngIso 𝑠 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 crisc 𝑟
1 vr 𝑟
2 vs 𝑠
3 1 cv 𝑟
4 crngo RingOps
5 3 4 wcel 𝑟 ∈ RingOps
6 2 cv 𝑠
7 6 4 wcel 𝑠 ∈ RingOps
8 5 7 wa ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps )
9 vf 𝑓
10 9 cv 𝑓
11 crngiso RngIso
12 3 6 11 co ( 𝑟 RngIso 𝑠 )
13 10 12 wcel 𝑓 ∈ ( 𝑟 RngIso 𝑠 )
14 13 9 wex 𝑓 𝑓 ∈ ( 𝑟 RngIso 𝑠 )
15 8 14 wa ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RngIso 𝑠 ) )
16 15 1 2 copab { ⟨ 𝑟 , 𝑠 ⟩ ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RngIso 𝑠 ) ) }
17 0 16 wceq 𝑟 = { ⟨ 𝑟 , 𝑠 ⟩ ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RngIso 𝑠 ) ) }