| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crli |
⊢ ⇝𝑟 |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
vx |
⊢ 𝑥 |
| 3 |
1
|
cv |
⊢ 𝑓 |
| 4 |
|
cc |
⊢ ℂ |
| 5 |
|
cpm |
⊢ ↑pm |
| 6 |
|
cr |
⊢ ℝ |
| 7 |
4 6 5
|
co |
⊢ ( ℂ ↑pm ℝ ) |
| 8 |
3 7
|
wcel |
⊢ 𝑓 ∈ ( ℂ ↑pm ℝ ) |
| 9 |
2
|
cv |
⊢ 𝑥 |
| 10 |
9 4
|
wcel |
⊢ 𝑥 ∈ ℂ |
| 11 |
8 10
|
wa |
⊢ ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) |
| 12 |
|
vy |
⊢ 𝑦 |
| 13 |
|
crp |
⊢ ℝ+ |
| 14 |
|
vz |
⊢ 𝑧 |
| 15 |
|
vw |
⊢ 𝑤 |
| 16 |
3
|
cdm |
⊢ dom 𝑓 |
| 17 |
14
|
cv |
⊢ 𝑧 |
| 18 |
|
cle |
⊢ ≤ |
| 19 |
15
|
cv |
⊢ 𝑤 |
| 20 |
17 19 18
|
wbr |
⊢ 𝑧 ≤ 𝑤 |
| 21 |
|
cabs |
⊢ abs |
| 22 |
19 3
|
cfv |
⊢ ( 𝑓 ‘ 𝑤 ) |
| 23 |
|
cmin |
⊢ − |
| 24 |
22 9 23
|
co |
⊢ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) |
| 25 |
24 21
|
cfv |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) |
| 26 |
|
clt |
⊢ < |
| 27 |
12
|
cv |
⊢ 𝑦 |
| 28 |
25 27 26
|
wbr |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 |
| 29 |
20 28
|
wi |
⊢ ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
| 30 |
29 15 16
|
wral |
⊢ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
| 31 |
30 14 6
|
wrex |
⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
| 32 |
31 12 13
|
wral |
⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
| 33 |
11 32
|
wa |
⊢ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) |
| 34 |
33 1 2
|
copab |
⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } |
| 35 |
0 34
|
wceq |
⊢ ⇝𝑟 = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } |