Step |
Hyp |
Ref |
Expression |
0 |
|
crloc |
⊢ RLocal |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
cmulr |
⊢ .r |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5 4
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
7 |
|
vx |
⊢ 𝑥 |
8 |
|
cbs |
⊢ Base |
9 |
5 8
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
10 |
3
|
cv |
⊢ 𝑠 |
11 |
9 10
|
cxp |
⊢ ( ( Base ‘ 𝑟 ) × 𝑠 ) |
12 |
|
vw |
⊢ 𝑤 |
13 |
|
cnx |
⊢ ndx |
14 |
13 8
|
cfv |
⊢ ( Base ‘ ndx ) |
15 |
12
|
cv |
⊢ 𝑤 |
16 |
14 15
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑤 〉 |
17 |
|
cplusg |
⊢ +g |
18 |
13 17
|
cfv |
⊢ ( +g ‘ ndx ) |
19 |
|
va |
⊢ 𝑎 |
20 |
|
vb |
⊢ 𝑏 |
21 |
|
c1st |
⊢ 1st |
22 |
19
|
cv |
⊢ 𝑎 |
23 |
22 21
|
cfv |
⊢ ( 1st ‘ 𝑎 ) |
24 |
7
|
cv |
⊢ 𝑥 |
25 |
|
c2nd |
⊢ 2nd |
26 |
20
|
cv |
⊢ 𝑏 |
27 |
26 25
|
cfv |
⊢ ( 2nd ‘ 𝑏 ) |
28 |
23 27 24
|
co |
⊢ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) |
29 |
5 17
|
cfv |
⊢ ( +g ‘ 𝑟 ) |
30 |
26 21
|
cfv |
⊢ ( 1st ‘ 𝑏 ) |
31 |
22 25
|
cfv |
⊢ ( 2nd ‘ 𝑎 ) |
32 |
30 31 24
|
co |
⊢ ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) |
33 |
28 32 29
|
co |
⊢ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) |
34 |
31 27 24
|
co |
⊢ ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) |
35 |
33 34
|
cop |
⊢ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 |
36 |
19 20 15 15 35
|
cmpo |
⊢ ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) |
37 |
18 36
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 |
38 |
13 4
|
cfv |
⊢ ( .r ‘ ndx ) |
39 |
23 30 24
|
co |
⊢ ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) |
40 |
39 34
|
cop |
⊢ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 |
41 |
19 20 15 15 40
|
cmpo |
⊢ ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) |
42 |
38 41
|
cop |
⊢ 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 |
43 |
16 37 42
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } |
44 |
|
csca |
⊢ Scalar |
45 |
13 44
|
cfv |
⊢ ( Scalar ‘ ndx ) |
46 |
5 44
|
cfv |
⊢ ( Scalar ‘ 𝑟 ) |
47 |
45 46
|
cop |
⊢ 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 |
48 |
|
cvsca |
⊢ ·𝑠 |
49 |
13 48
|
cfv |
⊢ ( ·𝑠 ‘ ndx ) |
50 |
|
vk |
⊢ 𝑘 |
51 |
46 8
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑟 ) ) |
52 |
50
|
cv |
⊢ 𝑘 |
53 |
5 48
|
cfv |
⊢ ( ·𝑠 ‘ 𝑟 ) |
54 |
52 23 53
|
co |
⊢ ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) |
55 |
54 31
|
cop |
⊢ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 |
56 |
50 19 51 15 55
|
cmpo |
⊢ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) |
57 |
49 56
|
cop |
⊢ 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 |
58 |
|
cip |
⊢ ·𝑖 |
59 |
13 58
|
cfv |
⊢ ( ·𝑖 ‘ ndx ) |
60 |
|
c0 |
⊢ ∅ |
61 |
59 60
|
cop |
⊢ 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 |
62 |
47 57 61
|
ctp |
⊢ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } |
63 |
43 62
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) |
64 |
|
cts |
⊢ TopSet |
65 |
13 64
|
cfv |
⊢ ( TopSet ‘ ndx ) |
66 |
5 64
|
cfv |
⊢ ( TopSet ‘ 𝑟 ) |
67 |
|
ctx |
⊢ ×t |
68 |
|
crest |
⊢ ↾t |
69 |
66 10 68
|
co |
⊢ ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) |
70 |
66 69 67
|
co |
⊢ ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) |
71 |
65 70
|
cop |
⊢ 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 |
72 |
|
cple |
⊢ le |
73 |
13 72
|
cfv |
⊢ ( le ‘ ndx ) |
74 |
22 15
|
wcel |
⊢ 𝑎 ∈ 𝑤 |
75 |
26 15
|
wcel |
⊢ 𝑏 ∈ 𝑤 |
76 |
74 75
|
wa |
⊢ ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) |
77 |
5 72
|
cfv |
⊢ ( le ‘ 𝑟 ) |
78 |
28 32 77
|
wbr |
⊢ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) |
79 |
76 78
|
wa |
⊢ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) |
80 |
79 19 20
|
copab |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } |
81 |
73 80
|
cop |
⊢ 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 |
82 |
|
cds |
⊢ dist |
83 |
13 82
|
cfv |
⊢ ( dist ‘ ndx ) |
84 |
5 82
|
cfv |
⊢ ( dist ‘ 𝑟 ) |
85 |
28 32 84
|
co |
⊢ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) |
86 |
19 20 15 15 85
|
cmpo |
⊢ ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) |
87 |
83 86
|
cop |
⊢ 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 |
88 |
71 81 87
|
ctp |
⊢ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } |
89 |
63 88
|
cun |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) |
90 |
|
cqus |
⊢ /s |
91 |
|
cerl |
⊢ ~RL |
92 |
5 10 91
|
co |
⊢ ( 𝑟 ~RL 𝑠 ) |
93 |
89 92 90
|
co |
⊢ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) |
94 |
12 11 93
|
csb |
⊢ ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) |
95 |
7 6 94
|
csb |
⊢ ⦋ ( .r ‘ 𝑟 ) / 𝑥 ⦌ ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) |
96 |
1 3 2 2 95
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ⦋ ( .r ‘ 𝑟 ) / 𝑥 ⦌ ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) ) |
97 |
0 96
|
wceq |
⊢ RLocal = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ⦋ ( .r ‘ 𝑟 ) / 𝑥 ⦌ ⦋ ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ⦌ ( ( ( { 〈 ( Base ‘ ndx ) , 𝑤 〉 , 〈 ( +g ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( +g ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ 〈 ( ( 1st ‘ 𝑎 ) 𝑥 ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) 〉 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎 ∈ 𝑤 ↦ 〈 ( 𝑘 ( ·𝑠 ‘ 𝑟 ) ( 1st ‘ 𝑎 ) ) , ( 2nd ‘ 𝑎 ) 〉 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∅ 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤 ) ∧ ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑎 ∈ 𝑤 , 𝑏 ∈ 𝑤 ↦ ( ( ( 1st ‘ 𝑎 ) 𝑥 ( 2nd ‘ 𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st ‘ 𝑏 ) 𝑥 ( 2nd ‘ 𝑎 ) ) ) ) 〉 } ) /s ( 𝑟 ~RL 𝑠 ) ) ) |