Metamath Proof Explorer


Definition df-rloc

Description: Define the operation giving the localization of a ring r by a given set s . The localized ring r RLocal s is the set of equivalence classes of pairs of elements in r over the relation r ~RL s with addition and multiplication defined naturally. (Contributed by Thierry Arnoux, 27-Apr-2025)

Ref Expression
Assertion df-rloc RLocal = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ( 𝑟 ~RL 𝑠 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crloc RLocal
1 vr 𝑟
2 cvv V
3 vs 𝑠
4 cmulr .r
5 1 cv 𝑟
6 5 4 cfv ( .r𝑟 )
7 vx 𝑥
8 cbs Base
9 5 8 cfv ( Base ‘ 𝑟 )
10 3 cv 𝑠
11 9 10 cxp ( ( Base ‘ 𝑟 ) × 𝑠 )
12 vw 𝑤
13 cnx ndx
14 13 8 cfv ( Base ‘ ndx )
15 12 cv 𝑤
16 14 15 cop ⟨ ( Base ‘ ndx ) , 𝑤
17 cplusg +g
18 13 17 cfv ( +g ‘ ndx )
19 va 𝑎
20 vb 𝑏
21 c1st 1st
22 19 cv 𝑎
23 22 21 cfv ( 1st𝑎 )
24 7 cv 𝑥
25 c2nd 2nd
26 20 cv 𝑏
27 26 25 cfv ( 2nd𝑏 )
28 23 27 24 co ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) )
29 5 17 cfv ( +g𝑟 )
30 26 21 cfv ( 1st𝑏 )
31 22 25 cfv ( 2nd𝑎 )
32 30 31 24 co ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) )
33 28 32 29 co ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) )
34 31 27 24 co ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) )
35 33 34 cop ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩
36 19 20 15 15 35 cmpo ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ )
37 18 36 cop ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩
38 13 4 cfv ( .r ‘ ndx )
39 23 30 24 co ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) )
40 39 34 cop ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩
41 19 20 15 15 40 cmpo ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ )
42 38 41 cop ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩
43 16 37 42 ctp { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ }
44 csca Scalar
45 13 44 cfv ( Scalar ‘ ndx )
46 5 44 cfv ( Scalar ‘ 𝑟 )
47 45 46 cop ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩
48 cvsca ·𝑠
49 13 48 cfv ( ·𝑠 ‘ ndx )
50 vk 𝑘
51 46 8 cfv ( Base ‘ ( Scalar ‘ 𝑟 ) )
52 50 cv 𝑘
53 5 48 cfv ( ·𝑠𝑟 )
54 52 23 53 co ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) )
55 54 31 cop ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩
56 50 19 51 15 55 cmpo ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ )
57 49 56 cop ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩
58 cip ·𝑖
59 13 58 cfv ( ·𝑖 ‘ ndx )
60 c0
61 59 60 cop ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩
62 47 57 61 ctp { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ }
63 43 62 cun ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } )
64 cts TopSet
65 13 64 cfv ( TopSet ‘ ndx )
66 5 64 cfv ( TopSet ‘ 𝑟 )
67 ctx ×t
68 crest t
69 66 10 68 co ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 )
70 66 69 67 co ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) )
71 65 70 cop ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩
72 cple le
73 13 72 cfv ( le ‘ ndx )
74 22 15 wcel 𝑎𝑤
75 26 15 wcel 𝑏𝑤
76 74 75 wa ( 𝑎𝑤𝑏𝑤 )
77 5 72 cfv ( le ‘ 𝑟 )
78 28 32 77 wbr ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) )
79 76 78 wa ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) )
80 79 19 20 copab { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) }
81 73 80 cop ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩
82 cds dist
83 13 82 cfv ( dist ‘ ndx )
84 5 82 cfv ( dist ‘ 𝑟 )
85 28 32 84 co ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) )
86 19 20 15 15 85 cmpo ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) )
87 83 86 cop ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩
88 71 81 87 ctp { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ }
89 63 88 cun ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } )
90 cqus /s
91 cerl ~RL
92 5 10 91 co ( 𝑟 ~RL 𝑠 )
93 89 92 90 co ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ( 𝑟 ~RL 𝑠 ) )
94 12 11 93 csb ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ( 𝑟 ~RL 𝑠 ) )
95 7 6 94 csb ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ( 𝑟 ~RL 𝑠 ) )
96 1 3 2 2 95 cmpo ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ( 𝑟 ~RL 𝑠 ) ) )
97 0 96 wceq RLocal = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 ( ( ( { ⟨ ( Base ‘ ndx ) , 𝑤 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( +g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ⟨ ( ( 1st𝑎 ) 𝑥 ( 1st𝑏 ) ) , ( ( 2nd𝑎 ) 𝑥 ( 2nd𝑏 ) ) ⟩ ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑎𝑤 ↦ ⟨ ( 𝑘 ( ·𝑠𝑟 ) ( 1st𝑎 ) ) , ( 2nd𝑎 ) ⟩ ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ∅ ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopSet ‘ 𝑟 ) ×t ( ( TopSet ‘ 𝑟 ) ↾t 𝑠 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( le ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑎𝑤 , 𝑏𝑤 ↦ ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( dist ‘ 𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) ⟩ } ) /s ( 𝑟 ~RL 𝑠 ) ) )