| Step | Hyp | Ref | Expression | 
						
							| 0 |  | crlreg | ⊢ RLReg | 
						
							| 1 |  | vr | ⊢ 𝑟 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑟 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑟 ) | 
						
							| 7 |  | vy | ⊢ 𝑦 | 
						
							| 8 | 3 | cv | ⊢ 𝑥 | 
						
							| 9 |  | cmulr | ⊢ .r | 
						
							| 10 | 5 9 | cfv | ⊢ ( .r ‘ 𝑟 ) | 
						
							| 11 | 7 | cv | ⊢ 𝑦 | 
						
							| 12 | 8 11 10 | co | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) | 
						
							| 13 |  | c0g | ⊢ 0g | 
						
							| 14 | 5 13 | cfv | ⊢ ( 0g ‘ 𝑟 ) | 
						
							| 15 | 12 14 | wceq | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  =  ( 0g ‘ 𝑟 ) | 
						
							| 16 | 11 14 | wceq | ⊢ 𝑦  =  ( 0g ‘ 𝑟 ) | 
						
							| 17 | 15 16 | wi | ⊢ ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  =  ( 0g ‘ 𝑟 )  →  𝑦  =  ( 0g ‘ 𝑟 ) ) | 
						
							| 18 | 17 7 6 | wral | ⊢ ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  =  ( 0g ‘ 𝑟 )  →  𝑦  =  ( 0g ‘ 𝑟 ) ) | 
						
							| 19 | 18 3 6 | crab | ⊢ { 𝑥  ∈  ( Base ‘ 𝑟 )  ∣  ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  =  ( 0g ‘ 𝑟 )  →  𝑦  =  ( 0g ‘ 𝑟 ) ) } | 
						
							| 20 | 1 2 19 | cmpt | ⊢ ( 𝑟  ∈  V  ↦  { 𝑥  ∈  ( Base ‘ 𝑟 )  ∣  ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  =  ( 0g ‘ 𝑟 )  →  𝑦  =  ( 0g ‘ 𝑟 ) ) } ) | 
						
							| 21 | 0 20 | wceq | ⊢ RLReg  =  ( 𝑟  ∈  V  ↦  { 𝑥  ∈  ( Base ‘ 𝑟 )  ∣  ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  =  ( 0g ‘ 𝑟 )  →  𝑦  =  ( 0g ‘ 𝑟 ) ) } ) |