Step |
Hyp |
Ref |
Expression |
0 |
|
crlreg |
⊢ RLReg |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
7 |
|
vy |
⊢ 𝑦 |
8 |
3
|
cv |
⊢ 𝑥 |
9 |
|
cmulr |
⊢ .r |
10 |
5 9
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
11 |
7
|
cv |
⊢ 𝑦 |
12 |
8 11 10
|
co |
⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
13 |
|
c0g |
⊢ 0g |
14 |
5 13
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
15 |
12 14
|
wceq |
⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) |
16 |
11 14
|
wceq |
⊢ 𝑦 = ( 0g ‘ 𝑟 ) |
17 |
15 16
|
wi |
⊢ ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) |
18 |
17 7 6
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) |
19 |
18 3 6
|
crab |
⊢ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) } |
20 |
1 2 19
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) } ) |
21 |
0 20
|
wceq |
⊢ RLReg = ( 𝑟 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) } ) |