Metamath Proof Explorer


Definition df-rlreg

Description: Define the set ofleft-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Assertion df-rlreg RLReg = ( 𝑟 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = ( 0g𝑟 ) → 𝑦 = ( 0g𝑟 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crlreg RLReg
1 vr 𝑟
2 cvv V
3 vx 𝑥
4 cbs Base
5 1 cv 𝑟
6 5 4 cfv ( Base ‘ 𝑟 )
7 vy 𝑦
8 3 cv 𝑥
9 cmulr .r
10 5 9 cfv ( .r𝑟 )
11 7 cv 𝑦
12 8 11 10 co ( 𝑥 ( .r𝑟 ) 𝑦 )
13 c0g 0g
14 5 13 cfv ( 0g𝑟 )
15 12 14 wceq ( 𝑥 ( .r𝑟 ) 𝑦 ) = ( 0g𝑟 )
16 11 14 wceq 𝑦 = ( 0g𝑟 )
17 15 16 wi ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = ( 0g𝑟 ) → 𝑦 = ( 0g𝑟 ) )
18 17 7 6 wral 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = ( 0g𝑟 ) → 𝑦 = ( 0g𝑟 ) )
19 18 3 6 crab { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = ( 0g𝑟 ) → 𝑦 = ( 0g𝑟 ) ) }
20 1 2 19 cmpt ( 𝑟 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = ( 0g𝑟 ) → 𝑦 = ( 0g𝑟 ) ) } )
21 0 20 wceq RLReg = ( 𝑟 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = ( 0g𝑟 ) → 𝑦 = ( 0g𝑟 ) ) } )