Metamath Proof Explorer


Definition df-rmx

Description: Define the X sequence as the rational part of some solution of a special Pell equation. See frmx and rmxyval for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion df-rmx Xrm = ( 𝑎 ∈ ( ℤ ‘ 2 ) , 𝑛 ∈ ℤ ↦ ( 1st ‘ ( ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑏 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑏 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑛 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crmx Xrm
1 va 𝑎
2 cuz
3 c2 2
4 3 2 cfv ( ℤ ‘ 2 )
5 vn 𝑛
6 cz
7 c1st 1st
8 vb 𝑏
9 cn0 0
10 9 6 cxp ( ℕ0 × ℤ )
11 8 cv 𝑏
12 11 7 cfv ( 1st𝑏 )
13 caddc +
14 csqrt
15 1 cv 𝑎
16 cexp
17 15 3 16 co ( 𝑎 ↑ 2 )
18 cmin
19 c1 1
20 17 19 18 co ( ( 𝑎 ↑ 2 ) − 1 )
21 20 14 cfv ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) )
22 cmul ·
23 c2nd 2nd
24 11 23 cfv ( 2nd𝑏 )
25 21 24 22 co ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑏 ) )
26 12 25 13 co ( ( 1st𝑏 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑏 ) ) )
27 8 10 26 cmpt ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑏 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑏 ) ) ) )
28 27 ccnv ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑏 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑏 ) ) ) )
29 15 21 13 co ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) )
30 5 cv 𝑛
31 29 30 16 co ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑛 )
32 31 28 cfv ( ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑏 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑏 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑛 ) )
33 32 7 cfv ( 1st ‘ ( ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑏 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑏 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑛 ) ) )
34 1 5 4 6 33 cmpo ( 𝑎 ∈ ( ℤ ‘ 2 ) , 𝑛 ∈ ℤ ↦ ( 1st ‘ ( ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑏 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑏 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑛 ) ) ) )
35 0 34 wceq Xrm = ( 𝑎 ∈ ( ℤ ‘ 2 ) , 𝑛 ∈ ℤ ↦ ( 1st ‘ ( ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st𝑏 ) + ( ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) · ( 2nd𝑏 ) ) ) ) ‘ ( ( 𝑎 + ( √ ‘ ( ( 𝑎 ↑ 2 ) − 1 ) ) ) ↑ 𝑛 ) ) ) )