| Step | Hyp | Ref | Expression | 
						
							| 0 |  | crng | ⊢ Rng | 
						
							| 1 |  | vf | ⊢ 𝑓 | 
						
							| 2 |  | cabl | ⊢ Abel | 
						
							| 3 |  | cmgp | ⊢ mulGrp | 
						
							| 4 | 1 | cv | ⊢ 𝑓 | 
						
							| 5 | 4 3 | cfv | ⊢ ( mulGrp ‘ 𝑓 ) | 
						
							| 6 |  | csgrp | ⊢ Smgrp | 
						
							| 7 | 5 6 | wcel | ⊢ ( mulGrp ‘ 𝑓 )  ∈  Smgrp | 
						
							| 8 |  | cbs | ⊢ Base | 
						
							| 9 | 4 8 | cfv | ⊢ ( Base ‘ 𝑓 ) | 
						
							| 10 |  | vb | ⊢ 𝑏 | 
						
							| 11 |  | cplusg | ⊢ +g | 
						
							| 12 | 4 11 | cfv | ⊢ ( +g ‘ 𝑓 ) | 
						
							| 13 |  | vp | ⊢ 𝑝 | 
						
							| 14 |  | cmulr | ⊢ .r | 
						
							| 15 | 4 14 | cfv | ⊢ ( .r ‘ 𝑓 ) | 
						
							| 16 |  | vt | ⊢ 𝑡 | 
						
							| 17 |  | vx | ⊢ 𝑥 | 
						
							| 18 | 10 | cv | ⊢ 𝑏 | 
						
							| 19 |  | vy | ⊢ 𝑦 | 
						
							| 20 |  | vz | ⊢ 𝑧 | 
						
							| 21 | 17 | cv | ⊢ 𝑥 | 
						
							| 22 | 16 | cv | ⊢ 𝑡 | 
						
							| 23 | 19 | cv | ⊢ 𝑦 | 
						
							| 24 | 13 | cv | ⊢ 𝑝 | 
						
							| 25 | 20 | cv | ⊢ 𝑧 | 
						
							| 26 | 23 25 24 | co | ⊢ ( 𝑦 𝑝 𝑧 ) | 
						
							| 27 | 21 26 22 | co | ⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) | 
						
							| 28 | 21 23 22 | co | ⊢ ( 𝑥 𝑡 𝑦 ) | 
						
							| 29 | 21 25 22 | co | ⊢ ( 𝑥 𝑡 𝑧 ) | 
						
							| 30 | 28 29 24 | co | ⊢ ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) | 
						
							| 31 | 27 30 | wceq | ⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) | 
						
							| 32 | 21 23 24 | co | ⊢ ( 𝑥 𝑝 𝑦 ) | 
						
							| 33 | 32 25 22 | co | ⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) | 
						
							| 34 | 23 25 22 | co | ⊢ ( 𝑦 𝑡 𝑧 ) | 
						
							| 35 | 29 34 24 | co | ⊢ ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) | 
						
							| 36 | 33 35 | wceq | ⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) | 
						
							| 37 | 31 36 | wa | ⊢ ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) | 
						
							| 38 | 37 20 18 | wral | ⊢ ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) | 
						
							| 39 | 38 19 18 | wral | ⊢ ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) | 
						
							| 40 | 39 17 18 | wral | ⊢ ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) | 
						
							| 41 | 40 16 15 | wsbc | ⊢ [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) | 
						
							| 42 | 41 13 12 | wsbc | ⊢ [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) | 
						
							| 43 | 42 10 9 | wsbc | ⊢ [ ( Base ‘ 𝑓 )  /  𝑏 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) | 
						
							| 44 | 7 43 | wa | ⊢ ( ( mulGrp ‘ 𝑓 )  ∈  Smgrp  ∧  [ ( Base ‘ 𝑓 )  /  𝑏 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) | 
						
							| 45 | 44 1 2 | crab | ⊢ { 𝑓  ∈  Abel  ∣  ( ( mulGrp ‘ 𝑓 )  ∈  Smgrp  ∧  [ ( Base ‘ 𝑓 )  /  𝑏 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } | 
						
							| 46 | 0 45 | wceq | ⊢ Rng  =  { 𝑓  ∈  Abel  ∣  ( ( mulGrp ‘ 𝑓 )  ∈  Smgrp  ∧  [ ( Base ‘ 𝑓 )  /  𝑏 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } |