Metamath Proof Explorer


Definition df-rnghom

Description: Define the set of ring homomorphisms from r to s . (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion df-rnghom RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( Base ‘ 𝑟 ) / 𝑣 ( Base ‘ 𝑠 ) / 𝑤 { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r𝑟 ) ) = ( 1r𝑠 ) ∧ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crh RingHom
1 vr 𝑟
2 crg Ring
3 vs 𝑠
4 cbs Base
5 1 cv 𝑟
6 5 4 cfv ( Base ‘ 𝑟 )
7 vv 𝑣
8 3 cv 𝑠
9 8 4 cfv ( Base ‘ 𝑠 )
10 vw 𝑤
11 vf 𝑓
12 10 cv 𝑤
13 cmap m
14 7 cv 𝑣
15 12 14 13 co ( 𝑤m 𝑣 )
16 11 cv 𝑓
17 cur 1r
18 5 17 cfv ( 1r𝑟 )
19 18 16 cfv ( 𝑓 ‘ ( 1r𝑟 ) )
20 8 17 cfv ( 1r𝑠 )
21 19 20 wceq ( 𝑓 ‘ ( 1r𝑟 ) ) = ( 1r𝑠 )
22 vx 𝑥
23 vy 𝑦
24 22 cv 𝑥
25 cplusg +g
26 5 25 cfv ( +g𝑟 )
27 23 cv 𝑦
28 24 27 26 co ( 𝑥 ( +g𝑟 ) 𝑦 )
29 28 16 cfv ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) )
30 24 16 cfv ( 𝑓𝑥 )
31 8 25 cfv ( +g𝑠 )
32 27 16 cfv ( 𝑓𝑦 )
33 30 32 31 co ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) )
34 29 33 wceq ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) )
35 cmulr .r
36 5 35 cfv ( .r𝑟 )
37 24 27 36 co ( 𝑥 ( .r𝑟 ) 𝑦 )
38 37 16 cfv ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) )
39 8 35 cfv ( .r𝑠 )
40 30 32 39 co ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) )
41 38 40 wceq ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) )
42 34 41 wa ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) )
43 42 23 14 wral 𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) )
44 43 22 14 wral 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) )
45 21 44 wa ( ( 𝑓 ‘ ( 1r𝑟 ) ) = ( 1r𝑠 ) ∧ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) )
46 45 11 15 crab { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r𝑟 ) ) = ( 1r𝑠 ) ∧ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) ) }
47 10 9 46 csb ( Base ‘ 𝑠 ) / 𝑤 { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r𝑟 ) ) = ( 1r𝑠 ) ∧ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) ) }
48 7 6 47 csb ( Base ‘ 𝑟 ) / 𝑣 ( Base ‘ 𝑠 ) / 𝑤 { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r𝑟 ) ) = ( 1r𝑠 ) ∧ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) ) }
49 1 3 2 2 48 cmpo ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( Base ‘ 𝑟 ) / 𝑣 ( Base ‘ 𝑠 ) / 𝑤 { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r𝑟 ) ) = ( 1r𝑠 ) ∧ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) ) } )
50 0 49 wceq RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( Base ‘ 𝑟 ) / 𝑣 ( Base ‘ 𝑠 ) / 𝑤 { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r𝑟 ) ) = ( 1r𝑠 ) ∧ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) ) } )