Step |
Hyp |
Ref |
Expression |
0 |
|
crh |
⊢ RingHom |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
crg |
⊢ Ring |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
7 |
|
vv |
⊢ 𝑣 |
8 |
3
|
cv |
⊢ 𝑠 |
9 |
8 4
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
10 |
|
vw |
⊢ 𝑤 |
11 |
|
vf |
⊢ 𝑓 |
12 |
10
|
cv |
⊢ 𝑤 |
13 |
|
cmap |
⊢ ↑m |
14 |
7
|
cv |
⊢ 𝑣 |
15 |
12 14 13
|
co |
⊢ ( 𝑤 ↑m 𝑣 ) |
16 |
11
|
cv |
⊢ 𝑓 |
17 |
|
cur |
⊢ 1r |
18 |
5 17
|
cfv |
⊢ ( 1r ‘ 𝑟 ) |
19 |
18 16
|
cfv |
⊢ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) |
20 |
8 17
|
cfv |
⊢ ( 1r ‘ 𝑠 ) |
21 |
19 20
|
wceq |
⊢ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) |
22 |
|
vx |
⊢ 𝑥 |
23 |
|
vy |
⊢ 𝑦 |
24 |
22
|
cv |
⊢ 𝑥 |
25 |
|
cplusg |
⊢ +g |
26 |
5 25
|
cfv |
⊢ ( +g ‘ 𝑟 ) |
27 |
23
|
cv |
⊢ 𝑦 |
28 |
24 27 26
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) |
29 |
28 16
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) |
30 |
24 16
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
31 |
8 25
|
cfv |
⊢ ( +g ‘ 𝑠 ) |
32 |
27 16
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
33 |
30 32 31
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
34 |
29 33
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
35 |
|
cmulr |
⊢ .r |
36 |
5 35
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
37 |
24 27 36
|
co |
⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
38 |
37 16
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) |
39 |
8 35
|
cfv |
⊢ ( .r ‘ 𝑠 ) |
40 |
30 32 39
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
41 |
38 40
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
42 |
34 41
|
wa |
⊢ ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
43 |
42 23 14
|
wral |
⊢ ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
44 |
43 22 14
|
wral |
⊢ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
45 |
21 44
|
wa |
⊢ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
46 |
45 11 15
|
crab |
⊢ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } |
47 |
10 9 46
|
csb |
⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } |
48 |
7 6 47
|
csb |
⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } |
49 |
1 3 2 2 48
|
cmpo |
⊢ ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
50 |
0 49
|
wceq |
⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |