Metamath Proof Explorer


Definition df-rngiso

Description: Define the set of ring isomorphisms from r to s . (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion df-rngiso RingIso = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crs RingIso
1 vr 𝑟
2 cvv V
3 vs 𝑠
4 vf 𝑓
5 1 cv 𝑟
6 crh RingHom
7 3 cv 𝑠
8 5 7 6 co ( 𝑟 RingHom 𝑠 )
9 4 cv 𝑓
10 9 ccnv 𝑓
11 7 5 6 co ( 𝑠 RingHom 𝑟 )
12 10 11 wcel 𝑓 ∈ ( 𝑠 RingHom 𝑟 )
13 12 4 8 crab { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) }
14 1 3 2 2 13 cmpo ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } )
15 0 14 wceq RingIso = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } )