| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crngo |
⊢ RingOps |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
vh |
⊢ ℎ |
| 3 |
1
|
cv |
⊢ 𝑔 |
| 4 |
|
cablo |
⊢ AbelOp |
| 5 |
3 4
|
wcel |
⊢ 𝑔 ∈ AbelOp |
| 6 |
2
|
cv |
⊢ ℎ |
| 7 |
3
|
crn |
⊢ ran 𝑔 |
| 8 |
7 7
|
cxp |
⊢ ( ran 𝑔 × ran 𝑔 ) |
| 9 |
8 7 6
|
wf |
⊢ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 |
| 10 |
5 9
|
wa |
⊢ ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) |
| 11 |
|
vx |
⊢ 𝑥 |
| 12 |
|
vy |
⊢ 𝑦 |
| 13 |
|
vz |
⊢ 𝑧 |
| 14 |
11
|
cv |
⊢ 𝑥 |
| 15 |
12
|
cv |
⊢ 𝑦 |
| 16 |
14 15 6
|
co |
⊢ ( 𝑥 ℎ 𝑦 ) |
| 17 |
13
|
cv |
⊢ 𝑧 |
| 18 |
16 17 6
|
co |
⊢ ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) |
| 19 |
15 17 6
|
co |
⊢ ( 𝑦 ℎ 𝑧 ) |
| 20 |
14 19 6
|
co |
⊢ ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) |
| 21 |
18 20
|
wceq |
⊢ ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) |
| 22 |
15 17 3
|
co |
⊢ ( 𝑦 𝑔 𝑧 ) |
| 23 |
14 22 6
|
co |
⊢ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) |
| 24 |
14 17 6
|
co |
⊢ ( 𝑥 ℎ 𝑧 ) |
| 25 |
16 24 3
|
co |
⊢ ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) |
| 26 |
23 25
|
wceq |
⊢ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) |
| 27 |
14 15 3
|
co |
⊢ ( 𝑥 𝑔 𝑦 ) |
| 28 |
27 17 6
|
co |
⊢ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) |
| 29 |
24 19 3
|
co |
⊢ ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) |
| 30 |
28 29
|
wceq |
⊢ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) |
| 31 |
21 26 30
|
w3a |
⊢ ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) |
| 32 |
31 13 7
|
wral |
⊢ ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) |
| 33 |
32 12 7
|
wral |
⊢ ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) |
| 34 |
33 11 7
|
wral |
⊢ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) |
| 35 |
16 15
|
wceq |
⊢ ( 𝑥 ℎ 𝑦 ) = 𝑦 |
| 36 |
15 14 6
|
co |
⊢ ( 𝑦 ℎ 𝑥 ) |
| 37 |
36 15
|
wceq |
⊢ ( 𝑦 ℎ 𝑥 ) = 𝑦 |
| 38 |
35 37
|
wa |
⊢ ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) |
| 39 |
38 12 7
|
wral |
⊢ ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) |
| 40 |
39 11 7
|
wrex |
⊢ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) |
| 41 |
34 40
|
wa |
⊢ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) |
| 42 |
10 41
|
wa |
⊢ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) |
| 43 |
42 1 2
|
copab |
⊢ { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } |
| 44 |
0 43
|
wceq |
⊢ RingOps = { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } |