Metamath Proof Explorer
Definition df-rp
Description: Define the set of positive reals. Definition of positive numbers in
Apostol p. 20. (Contributed by NM, 27-Oct-2007)
|
|
Ref |
Expression |
|
Assertion |
df-rp |
⊢ ℝ+ = { 𝑥 ∈ ℝ ∣ 0 < 𝑥 } |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
crp |
⊢ ℝ+ |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cr |
⊢ ℝ |
3 |
|
cc0 |
⊢ 0 |
4 |
|
clt |
⊢ < |
5 |
1
|
cv |
⊢ 𝑥 |
6 |
3 5 4
|
wbr |
⊢ 0 < 𝑥 |
7 |
6 1 2
|
crab |
⊢ { 𝑥 ∈ ℝ ∣ 0 < 𝑥 } |
8 |
0 7
|
wceq |
⊢ ℝ+ = { 𝑥 ∈ ℝ ∣ 0 < 𝑥 } |