Metamath Proof Explorer


Definition df-s2

Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion df-s2 ⟨“ 𝐴 𝐵 ”⟩ = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐵 ”⟩ )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 cs2 ⟨“ 𝐴 𝐵 ”⟩
3 0 cs1 ⟨“ 𝐴 ”⟩
4 cconcat ++
5 1 cs1 ⟨“ 𝐵 ”⟩
6 3 5 4 co ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐵 ”⟩ )
7 2 6 wceq ⟨“ 𝐴 𝐵 ”⟩ = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐵 ”⟩ )