Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Definition and basic properties
df-scaf
Metamath Proof Explorer
Description: Define the functionalization of the .s operator. This restricts the
value of .s to the stated domain, which is necessary when working
with restricted structures, whose operations may be defined on a larger
set than the true base. (Contributed by Mario Carneiro , 5-Oct-2015)
Ref
Expression
Assertion
df-scaf
⊢ · sf = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑔 ) ) , 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑥 ( · 𝑠 ‘ 𝑔 ) 𝑦 ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cscaf
⊢ · sf
1
vg
⊢ 𝑔
2
cvv
⊢ V
3
vx
⊢ 𝑥
4
cbs
⊢ Base
5
csca
⊢ Scalar
6
1
cv
⊢ 𝑔
7
6 5
cfv
⊢ ( Scalar ‘ 𝑔 )
8
7 4
cfv
⊢ ( Base ‘ ( Scalar ‘ 𝑔 ) )
9
vy
⊢ 𝑦
10
6 4
cfv
⊢ ( Base ‘ 𝑔 )
11
3
cv
⊢ 𝑥
12
cvsca
⊢ · 𝑠
13
6 12
cfv
⊢ ( · 𝑠 ‘ 𝑔 )
14
9
cv
⊢ 𝑦
15
11 14 13
co
⊢ ( 𝑥 ( · 𝑠 ‘ 𝑔 ) 𝑦 )
16
3 9 8 10 15
cmpo
⊢ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑔 ) ) , 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑥 ( · 𝑠 ‘ 𝑔 ) 𝑦 ) )
17
1 2 16
cmpt
⊢ ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑔 ) ) , 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑥 ( · 𝑠 ‘ 𝑔 ) 𝑦 ) ) )
18
0 17
wceq
⊢ · sf = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑔 ) ) , 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑥 ( · 𝑠 ‘ 𝑔 ) 𝑦 ) ) )