Metamath Proof Explorer


Definition df-scmat

Description: Define the algebra of n x n scalar matrices over a set (usually a ring) r, see definition in Connell p. 57: "Ascalar matrix is a diagonal matrix for which all the diagonal terms are equal, i.e., a matrix of the form cI_n". (Contributed by AV, 8-Dec-2019)

Ref Expression
Assertion df-scmat ScMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠𝑎 ) ( 1r𝑎 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cscmat ScMat
1 vn 𝑛
2 cfn Fin
3 vr 𝑟
4 cvv V
5 1 cv 𝑛
6 cmat Mat
7 3 cv 𝑟
8 5 7 6 co ( 𝑛 Mat 𝑟 )
9 va 𝑎
10 vm 𝑚
11 cbs Base
12 9 cv 𝑎
13 12 11 cfv ( Base ‘ 𝑎 )
14 vc 𝑐
15 7 11 cfv ( Base ‘ 𝑟 )
16 10 cv 𝑚
17 14 cv 𝑐
18 cvsca ·𝑠
19 12 18 cfv ( ·𝑠𝑎 )
20 cur 1r
21 12 20 cfv ( 1r𝑎 )
22 17 21 19 co ( 𝑐 ( ·𝑠𝑎 ) ( 1r𝑎 ) )
23 16 22 wceq 𝑚 = ( 𝑐 ( ·𝑠𝑎 ) ( 1r𝑎 ) )
24 23 14 15 wrex 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠𝑎 ) ( 1r𝑎 ) )
25 24 10 13 crab { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠𝑎 ) ( 1r𝑎 ) ) }
26 9 8 25 csb ( 𝑛 Mat 𝑟 ) / 𝑎 { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠𝑎 ) ( 1r𝑎 ) ) }
27 1 3 2 4 26 cmpo ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠𝑎 ) ( 1r𝑎 ) ) } )
28 0 27 wceq ScMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠𝑎 ) ( 1r𝑎 ) ) } )