Metamath Proof Explorer


Definition df-se

Description: Define the set-like predicate. (Contributed by Mario Carneiro, 19-Nov-2014)

Ref Expression
Assertion df-se ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 cA 𝐴
2 1 0 wse 𝑅 Se 𝐴
3 vx 𝑥
4 vy 𝑦
5 4 cv 𝑦
6 3 cv 𝑥
7 5 6 0 wbr 𝑦 𝑅 𝑥
8 7 4 1 crab { 𝑦𝐴𝑦 𝑅 𝑥 }
9 cvv V
10 8 9 wcel { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V
11 10 3 1 wral 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V
12 2 11 wb ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )