Metamath Proof Explorer
Definition df-se
Description: Define the set-like predicate. (Contributed by Mario Carneiro, 19-Nov-2014)
|
|
Ref |
Expression |
|
Assertion |
df-se |
⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cR |
⊢ 𝑅 |
| 1 |
|
cA |
⊢ 𝐴 |
| 2 |
1 0
|
wse |
⊢ 𝑅 Se 𝐴 |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
vy |
⊢ 𝑦 |
| 5 |
4
|
cv |
⊢ 𝑦 |
| 6 |
3
|
cv |
⊢ 𝑥 |
| 7 |
5 6 0
|
wbr |
⊢ 𝑦 𝑅 𝑥 |
| 8 |
7 4 1
|
crab |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } |
| 9 |
|
cvv |
⊢ V |
| 10 |
8 9
|
wcel |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V |
| 11 |
10 3 1
|
wral |
⊢ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V |
| 12 |
2 11
|
wb |
⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |