Step |
Hyp |
Ref |
Expression |
0 |
|
csect |
⊢ Sect |
1 |
|
vc |
⊢ 𝑐 |
2 |
|
ccat |
⊢ Cat |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑐 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑐 ) |
7 |
|
vy |
⊢ 𝑦 |
8 |
|
vf |
⊢ 𝑓 |
9 |
|
vg |
⊢ 𝑔 |
10 |
|
chom |
⊢ Hom |
11 |
5 10
|
cfv |
⊢ ( Hom ‘ 𝑐 ) |
12 |
|
vh |
⊢ ℎ |
13 |
8
|
cv |
⊢ 𝑓 |
14 |
3
|
cv |
⊢ 𝑥 |
15 |
12
|
cv |
⊢ ℎ |
16 |
7
|
cv |
⊢ 𝑦 |
17 |
14 16 15
|
co |
⊢ ( 𝑥 ℎ 𝑦 ) |
18 |
13 17
|
wcel |
⊢ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
19 |
9
|
cv |
⊢ 𝑔 |
20 |
16 14 15
|
co |
⊢ ( 𝑦 ℎ 𝑥 ) |
21 |
19 20
|
wcel |
⊢ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) |
22 |
18 21
|
wa |
⊢ ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) |
23 |
14 16
|
cop |
⊢ 〈 𝑥 , 𝑦 〉 |
24 |
|
cco |
⊢ comp |
25 |
5 24
|
cfv |
⊢ ( comp ‘ 𝑐 ) |
26 |
23 14 25
|
co |
⊢ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) |
27 |
19 13 26
|
co |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) |
28 |
|
ccid |
⊢ Id |
29 |
5 28
|
cfv |
⊢ ( Id ‘ 𝑐 ) |
30 |
14 29
|
cfv |
⊢ ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) |
31 |
27 30
|
wceq |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) |
32 |
22 31
|
wa |
⊢ ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) |
33 |
32 12 11
|
wsbc |
⊢ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) |
34 |
33 8 9
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } |
35 |
3 7 6 6 34
|
cmpo |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) |
36 |
1 2 35
|
cmpt |
⊢ ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) ) |
37 |
0 36
|
wceq |
⊢ Sect = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) ) |