Description: Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of CC ) and produces a new function on CC . See shftval for its value. (Contributed by NM, 20-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | df-shft | ⊢ shift = ( 𝑓 ∈ V , 𝑥 ∈ ℂ ↦ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝑥 ) 𝑓 𝑧 ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cshi | ⊢ shift | |
1 | vf | ⊢ 𝑓 | |
2 | cvv | ⊢ V | |
3 | vx | ⊢ 𝑥 | |
4 | cc | ⊢ ℂ | |
5 | vy | ⊢ 𝑦 | |
6 | vz | ⊢ 𝑧 | |
7 | 5 | cv | ⊢ 𝑦 |
8 | 7 4 | wcel | ⊢ 𝑦 ∈ ℂ |
9 | cmin | ⊢ − | |
10 | 3 | cv | ⊢ 𝑥 |
11 | 7 10 9 | co | ⊢ ( 𝑦 − 𝑥 ) |
12 | 1 | cv | ⊢ 𝑓 |
13 | 6 | cv | ⊢ 𝑧 |
14 | 11 13 12 | wbr | ⊢ ( 𝑦 − 𝑥 ) 𝑓 𝑧 |
15 | 8 14 | wa | ⊢ ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝑥 ) 𝑓 𝑧 ) |
16 | 15 5 6 | copab | ⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝑥 ) 𝑓 𝑧 ) } |
17 | 1 3 2 4 16 | cmpo | ⊢ ( 𝑓 ∈ V , 𝑥 ∈ ℂ ↦ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝑥 ) 𝑓 𝑧 ) } ) |
18 | 0 17 | wceq | ⊢ shift = ( 𝑓 ∈ V , 𝑥 ∈ ℂ ↦ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝑥 ) 𝑓 𝑧 ) } ) |