Metamath Proof Explorer


Definition df-shft

Description: Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of CC ) and produces a new function on CC . See shftval for its value. (Contributed by NM, 20-Jul-2005)

Ref Expression
Assertion df-shft shift = ( 𝑓 ∈ V , 𝑥 ∈ ℂ ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑦𝑥 ) 𝑓 𝑧 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cshi shift
1 vf 𝑓
2 cvv V
3 vx 𝑥
4 cc
5 vy 𝑦
6 vz 𝑧
7 5 cv 𝑦
8 7 4 wcel 𝑦 ∈ ℂ
9 cmin
10 3 cv 𝑥
11 7 10 9 co ( 𝑦𝑥 )
12 1 cv 𝑓
13 6 cv 𝑧
14 11 13 12 wbr ( 𝑦𝑥 ) 𝑓 𝑧
15 8 14 wa ( 𝑦 ∈ ℂ ∧ ( 𝑦𝑥 ) 𝑓 𝑧 )
16 15 5 6 copab { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑦𝑥 ) 𝑓 𝑧 ) }
17 1 3 2 4 16 cmpo ( 𝑓 ∈ V , 𝑥 ∈ ℂ ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑦𝑥 ) 𝑓 𝑧 ) } )
18 0 17 wceq shift = ( 𝑓 ∈ V , 𝑥 ∈ ℂ ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑦𝑥 ) 𝑓 𝑧 ) } )