Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Subspaces and projections Subspace sum, span, lattice join, lattice supremum df-shs  
				
		 
		
			
		 
		Description:   Define subspace sum in SH  .  See shsval  , shsval2i  , and
       shsval3i  for its value.  (Contributed by NM , 16-Oct-1999) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-shs ⊢    +ℋ    =  ( 𝑥   ∈   S ℋ   ,  𝑦   ∈   S ℋ    ↦  (  +ℎ    “  ( 𝑥   ×  𝑦  ) ) )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cph ⊢   +ℋ    
						
							1 
								
							 
							vx ⊢  𝑥   
						
							2 
								
							 
							csh ⊢   S ℋ    
						
							3 
								
							 
							vy ⊢  𝑦   
						
							4 
								
							 
							cva ⊢   +ℎ    
						
							5 
								1 
							 
							cv ⊢  𝑥   
						
							6 
								3 
							 
							cv ⊢  𝑦   
						
							7 
								5  6 
							 
							cxp ⊢  ( 𝑥   ×  𝑦  )  
						
							8 
								4  7 
							 
							cima ⊢  (  +ℎ    “  ( 𝑥   ×  𝑦  ) )  
						
							9 
								1  3  2  2  8 
							 
							cmpo ⊢  ( 𝑥   ∈   S ℋ   ,  𝑦   ∈   S ℋ    ↦  (  +ℎ    “  ( 𝑥   ×  𝑦  ) ) )  
						
							10 
								0  9 
							 
							wceq ⊢   +ℋ    =  ( 𝑥   ∈   S ℋ   ,  𝑦   ∈   S ℋ    ↦  (  +ℎ    “  ( 𝑥   ×  𝑦  ) ) )