Step |
Hyp |
Ref |
Expression |
0 |
|
csin |
⊢ sin |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cc |
⊢ ℂ |
3 |
|
ce |
⊢ exp |
4 |
|
ci |
⊢ i |
5 |
|
cmul |
⊢ · |
6 |
1
|
cv |
⊢ 𝑥 |
7 |
4 6 5
|
co |
⊢ ( i · 𝑥 ) |
8 |
7 3
|
cfv |
⊢ ( exp ‘ ( i · 𝑥 ) ) |
9 |
|
cmin |
⊢ − |
10 |
4
|
cneg |
⊢ - i |
11 |
10 6 5
|
co |
⊢ ( - i · 𝑥 ) |
12 |
11 3
|
cfv |
⊢ ( exp ‘ ( - i · 𝑥 ) ) |
13 |
8 12 9
|
co |
⊢ ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) |
14 |
|
cdiv |
⊢ / |
15 |
|
c2 |
⊢ 2 |
16 |
15 4 5
|
co |
⊢ ( 2 · i ) |
17 |
13 16 14
|
co |
⊢ ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) |
18 |
1 2 17
|
cmpt |
⊢ ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ) |
19 |
0 18
|
wceq |
⊢ sin = ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ) |