| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cslw | ⊢  pSyl | 
						
							| 1 |  | vp | ⊢ 𝑝 | 
						
							| 2 |  | cprime | ⊢ ℙ | 
						
							| 3 |  | vg | ⊢ 𝑔 | 
						
							| 4 |  | cgrp | ⊢ Grp | 
						
							| 5 |  | vh | ⊢ ℎ | 
						
							| 6 |  | csubg | ⊢ SubGrp | 
						
							| 7 | 3 | cv | ⊢ 𝑔 | 
						
							| 8 | 7 6 | cfv | ⊢ ( SubGrp ‘ 𝑔 ) | 
						
							| 9 |  | vk | ⊢ 𝑘 | 
						
							| 10 | 5 | cv | ⊢ ℎ | 
						
							| 11 | 9 | cv | ⊢ 𝑘 | 
						
							| 12 | 10 11 | wss | ⊢ ℎ  ⊆  𝑘 | 
						
							| 13 | 1 | cv | ⊢ 𝑝 | 
						
							| 14 |  | cpgp | ⊢  pGrp | 
						
							| 15 |  | cress | ⊢  ↾s | 
						
							| 16 | 7 11 15 | co | ⊢ ( 𝑔  ↾s  𝑘 ) | 
						
							| 17 | 13 16 14 | wbr | ⊢ 𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) | 
						
							| 18 | 12 17 | wa | ⊢ ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) ) | 
						
							| 19 | 10 11 | wceq | ⊢ ℎ  =  𝑘 | 
						
							| 20 | 18 19 | wb | ⊢ ( ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) | 
						
							| 21 | 20 9 8 | wral | ⊢ ∀ 𝑘  ∈  ( SubGrp ‘ 𝑔 ) ( ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) | 
						
							| 22 | 21 5 8 | crab | ⊢ { ℎ  ∈  ( SubGrp ‘ 𝑔 )  ∣  ∀ 𝑘  ∈  ( SubGrp ‘ 𝑔 ) ( ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) } | 
						
							| 23 | 1 3 2 4 22 | cmpo | ⊢ ( 𝑝  ∈  ℙ ,  𝑔  ∈  Grp  ↦  { ℎ  ∈  ( SubGrp ‘ 𝑔 )  ∣  ∀ 𝑘  ∈  ( SubGrp ‘ 𝑔 ) ( ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) } ) | 
						
							| 24 | 0 23 | wceq | ⊢  pSyl   =  ( 𝑝  ∈  ℙ ,  𝑔  ∈  Grp  ↦  { ℎ  ∈  ( SubGrp ‘ 𝑔 )  ∣  ∀ 𝑘  ∈  ( SubGrp ‘ 𝑔 ) ( ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) } ) |