| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cA | ⊢ 𝐴 | 
						
							| 1 | 0 | wsmo | ⊢ Smo  𝐴 | 
						
							| 2 | 0 | cdm | ⊢ dom  𝐴 | 
						
							| 3 |  | con0 | ⊢ On | 
						
							| 4 | 2 3 0 | wf | ⊢ 𝐴 : dom  𝐴 ⟶ On | 
						
							| 5 | 2 | word | ⊢ Ord  dom  𝐴 | 
						
							| 6 |  | vx | ⊢ 𝑥 | 
						
							| 7 |  | vy | ⊢ 𝑦 | 
						
							| 8 | 6 | cv | ⊢ 𝑥 | 
						
							| 9 | 7 | cv | ⊢ 𝑦 | 
						
							| 10 | 8 9 | wcel | ⊢ 𝑥  ∈  𝑦 | 
						
							| 11 | 8 0 | cfv | ⊢ ( 𝐴 ‘ 𝑥 ) | 
						
							| 12 | 9 0 | cfv | ⊢ ( 𝐴 ‘ 𝑦 ) | 
						
							| 13 | 11 12 | wcel | ⊢ ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐴 ‘ 𝑦 ) | 
						
							| 14 | 10 13 | wi | ⊢ ( 𝑥  ∈  𝑦  →  ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐴 ‘ 𝑦 ) ) | 
						
							| 15 | 14 7 2 | wral | ⊢ ∀ 𝑦  ∈  dom  𝐴 ( 𝑥  ∈  𝑦  →  ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐴 ‘ 𝑦 ) ) | 
						
							| 16 | 15 6 2 | wral | ⊢ ∀ 𝑥  ∈  dom  𝐴 ∀ 𝑦  ∈  dom  𝐴 ( 𝑥  ∈  𝑦  →  ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐴 ‘ 𝑦 ) ) | 
						
							| 17 | 4 5 16 | w3a | ⊢ ( 𝐴 : dom  𝐴 ⟶ On  ∧  Ord  dom  𝐴  ∧  ∀ 𝑥  ∈  dom  𝐴 ∀ 𝑦  ∈  dom  𝐴 ( 𝑥  ∈  𝑦  →  ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐴 ‘ 𝑦 ) ) ) | 
						
							| 18 | 1 17 | wb | ⊢ ( Smo  𝐴  ↔  ( 𝐴 : dom  𝐴 ⟶ On  ∧  Ord  dom  𝐴  ∧  ∀ 𝑥  ∈  dom  𝐴 ∀ 𝑦  ∈  dom  𝐴 ( 𝑥  ∈  𝑦  →  ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐴 ‘ 𝑦 ) ) ) ) |