Metamath Proof Explorer


Definition df-so

Description: Define the strict complete (linear) order predicate. The expression R Or A is true if relationship R orders A . For example, < Or RR is true ( ltso ). Equivalent to Definition 6.19(1) of TakeutiZaring p. 29. (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion df-so ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 cA 𝐴
2 1 0 wor 𝑅 Or 𝐴
3 1 0 wpo 𝑅 Po 𝐴
4 vx 𝑥
5 vy 𝑦
6 4 cv 𝑥
7 5 cv 𝑦
8 6 7 0 wbr 𝑥 𝑅 𝑦
9 6 7 wceq 𝑥 = 𝑦
10 7 6 0 wbr 𝑦 𝑅 𝑥
11 8 9 10 w3o ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 )
12 11 5 1 wral 𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 )
13 12 4 1 wral 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 )
14 3 13 wa ( 𝑅 Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) )
15 2 14 wb ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) )