Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Subspaces and projections Subspace sum, span, lattice join, lattice supremum df-span  
				
		 
		
			
		 
		Description:   Define the linear span of a subset of Hilbert space.  Definition of span
       in Schechter  p. 276.  See spanval  for its value.  (Contributed by NM , 2-Jun-2004)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-span ⊢   span  =  ( 𝑥   ∈  𝒫   ℋ  ↦  ∩   { 𝑦   ∈   S ℋ    ∣  𝑥   ⊆  𝑦  } )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cspn ⊢  span  
						
							1 
								
							 
							vx ⊢  𝑥   
						
							2 
								
							 
							chba ⊢   ℋ  
						
							3 
								2 
							 
							cpw ⊢  𝒫   ℋ  
						
							4 
								
							 
							vy ⊢  𝑦   
						
							5 
								
							 
							csh ⊢   S ℋ    
						
							6 
								1 
							 
							cv ⊢  𝑥   
						
							7 
								4 
							 
							cv ⊢  𝑦   
						
							8 
								6  7 
							 
							wss ⊢  𝑥   ⊆  𝑦   
						
							9 
								8  4  5 
							 
							crab ⊢  { 𝑦   ∈   S ℋ    ∣  𝑥   ⊆  𝑦  }  
						
							10 
								9 
							 
							cint ⊢  ∩   { 𝑦   ∈   S ℋ    ∣  𝑥   ⊆  𝑦  }  
						
							11 
								1  3  10 
							 
							cmpt ⊢  ( 𝑥   ∈  𝒫   ℋ  ↦  ∩   { 𝑦   ∈   S ℋ    ∣  𝑥   ⊆  𝑦  } )  
						
							12 
								0  11 
							 
							wceq ⊢  span  =  ( 𝑥   ∈  𝒫   ℋ  ↦  ∩   { 𝑦   ∈   S ℋ    ∣  𝑥   ⊆  𝑦  } )