Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Subspaces and projections
Subspace sum, span, lattice join, lattice supremum
df-span
Metamath Proof Explorer
Description: Define the linear span of a subset of Hilbert space. Definition of span
in Schechter p. 276. See spanval for its value. (Contributed by NM , 2-Jun-2004) (New usage is discouraged.)
Ref
Expression
Assertion
df-span
⊢ span = ( 𝑥 ∈ 𝒫 ℋ ↦ ∩ { 𝑦 ∈ S ℋ ∣ 𝑥 ⊆ 𝑦 } )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cspn
⊢ span
1
vx
⊢ 𝑥
2
chba
⊢ ℋ
3
2
cpw
⊢ 𝒫 ℋ
4
vy
⊢ 𝑦
5
csh
⊢ S ℋ
6
1
cv
⊢ 𝑥
7
4
cv
⊢ 𝑦
8
6 7
wss
⊢ 𝑥 ⊆ 𝑦
9
8 4 5
crab
⊢ { 𝑦 ∈ S ℋ ∣ 𝑥 ⊆ 𝑦 }
10
9
cint
⊢ ∩ { 𝑦 ∈ S ℋ ∣ 𝑥 ⊆ 𝑦 }
11
1 3 10
cmpt
⊢ ( 𝑥 ∈ 𝒫 ℋ ↦ ∩ { 𝑦 ∈ S ℋ ∣ 𝑥 ⊆ 𝑦 } )
12
0 11
wceq
⊢ span = ( 𝑥 ∈ 𝒫 ℋ ↦ ∩ { 𝑦 ∈ S ℋ ∣ 𝑥 ⊆ 𝑦 } )