Metamath Proof Explorer


Definition df-spec

Description: Define the spectrum of an operator. Definition of spectrum in Halmos p. 50. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion df-spec Lambda = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cspc Lambda
1 vt 𝑡
2 chba
3 cmap m
4 2 2 3 co ( ℋ ↑m ℋ )
5 vx 𝑥
6 cc
7 1 cv 𝑡
8 chod op
9 5 cv 𝑥
10 chot ·op
11 cid I
12 11 2 cres ( I ↾ ℋ )
13 9 12 10 co ( 𝑥 ·op ( I ↾ ℋ ) )
14 7 13 8 co ( 𝑡op ( 𝑥 ·op ( I ↾ ℋ ) ) )
15 2 2 14 wf1 ( 𝑡op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ
16 15 wn ¬ ( 𝑡op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ
17 16 5 6 crab { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ }
18 1 4 17 cmpt ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } )
19 0 18 wceq Lambda = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } )