| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cspthson | ⊢ SPathsOn | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | va | ⊢ 𝑎 | 
						
							| 4 |  | cvtx | ⊢ Vtx | 
						
							| 5 | 1 | cv | ⊢ 𝑔 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Vtx ‘ 𝑔 ) | 
						
							| 7 |  | vb | ⊢ 𝑏 | 
						
							| 8 |  | vf | ⊢ 𝑓 | 
						
							| 9 |  | vp | ⊢ 𝑝 | 
						
							| 10 | 8 | cv | ⊢ 𝑓 | 
						
							| 11 | 3 | cv | ⊢ 𝑎 | 
						
							| 12 |  | ctrlson | ⊢ TrailsOn | 
						
							| 13 | 5 12 | cfv | ⊢ ( TrailsOn ‘ 𝑔 ) | 
						
							| 14 | 7 | cv | ⊢ 𝑏 | 
						
							| 15 | 11 14 13 | co | ⊢ ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) | 
						
							| 16 | 9 | cv | ⊢ 𝑝 | 
						
							| 17 | 10 16 15 | wbr | ⊢ 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝 | 
						
							| 18 |  | cspths | ⊢ SPaths | 
						
							| 19 | 5 18 | cfv | ⊢ ( SPaths ‘ 𝑔 ) | 
						
							| 20 | 10 16 19 | wbr | ⊢ 𝑓 ( SPaths ‘ 𝑔 ) 𝑝 | 
						
							| 21 | 17 20 | wa | ⊢ ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝  ∧  𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) | 
						
							| 22 | 21 8 9 | copab | ⊢ { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝  ∧  𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) } | 
						
							| 23 | 3 7 6 6 22 | cmpo | ⊢ ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝  ∧  𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) } ) | 
						
							| 24 | 1 2 23 | cmpt | ⊢ ( 𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝  ∧  𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) } ) ) | 
						
							| 25 | 0 24 | wceq | ⊢ SPathsOn  =  ( 𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝  ∧  𝑓 ( SPaths ‘ 𝑔 ) 𝑝 ) } ) ) |