Metamath Proof Explorer


Definition df-sra

Description: Any ring can be regarded as a left algebra over any of its subrings. The function subringAlg associates with any ring and any of its subrings the left algebra consisting in the ring itself regarded as a left algebra over the subring. It has an inner product which is simply the ring product. (Contributed by Mario Carneiro, 27-Nov-2014) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Assertion df-sra subringAlg = ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( ( ( 𝑤 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑤s 𝑠 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑤 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑤 ) ⟩ ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csra subringAlg
1 vw 𝑤
2 cvv V
3 vs 𝑠
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 6 cpw 𝒫 ( Base ‘ 𝑤 )
8 csts sSet
9 csca Scalar
10 cnx ndx
11 10 9 cfv ( Scalar ‘ ndx )
12 cress s
13 3 cv 𝑠
14 5 13 12 co ( 𝑤s 𝑠 )
15 11 14 cop ⟨ ( Scalar ‘ ndx ) , ( 𝑤s 𝑠 ) ⟩
16 5 15 8 co ( 𝑤 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑤s 𝑠 ) ⟩ )
17 cvsca ·𝑠
18 10 17 cfv ( ·𝑠 ‘ ndx )
19 cmulr .r
20 5 19 cfv ( .r𝑤 )
21 18 20 cop ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑤 ) ⟩
22 16 21 8 co ( ( 𝑤 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑤s 𝑠 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑤 ) ⟩ )
23 cip ·𝑖
24 10 23 cfv ( ·𝑖 ‘ ndx )
25 24 20 cop ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑤 ) ⟩
26 22 25 8 co ( ( ( 𝑤 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑤s 𝑠 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑤 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑤 ) ⟩ )
27 3 7 26 cmpt ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( ( ( 𝑤 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑤s 𝑠 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑤 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑤 ) ⟩ ) )
28 1 2 27 cmpt ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( ( ( 𝑤 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑤s 𝑠 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑤 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑤 ) ⟩ ) ) )
29 0 28 wceq subringAlg = ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( ( ( 𝑤 sSet ⟨ ( Scalar ‘ ndx ) , ( 𝑤s 𝑠 ) ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .r𝑤 ) ⟩ ) sSet ⟨ ( ·𝑖 ‘ ndx ) , ( .r𝑤 ) ⟩ ) ) )