Step |
Hyp |
Ref |
Expression |
0 |
|
csrg |
⊢ SRing |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
ccmn |
⊢ CMnd |
3 |
|
cmgp |
⊢ mulGrp |
4 |
1
|
cv |
⊢ 𝑓 |
5 |
4 3
|
cfv |
⊢ ( mulGrp ‘ 𝑓 ) |
6 |
|
cmnd |
⊢ Mnd |
7 |
5 6
|
wcel |
⊢ ( mulGrp ‘ 𝑓 ) ∈ Mnd |
8 |
|
cbs |
⊢ Base |
9 |
4 8
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
10 |
|
vr |
⊢ 𝑟 |
11 |
|
cplusg |
⊢ +g |
12 |
4 11
|
cfv |
⊢ ( +g ‘ 𝑓 ) |
13 |
|
vp |
⊢ 𝑝 |
14 |
|
cmulr |
⊢ .r |
15 |
4 14
|
cfv |
⊢ ( .r ‘ 𝑓 ) |
16 |
|
vt |
⊢ 𝑡 |
17 |
|
c0g |
⊢ 0g |
18 |
4 17
|
cfv |
⊢ ( 0g ‘ 𝑓 ) |
19 |
|
vn |
⊢ 𝑛 |
20 |
|
vx |
⊢ 𝑥 |
21 |
10
|
cv |
⊢ 𝑟 |
22 |
|
vy |
⊢ 𝑦 |
23 |
|
vz |
⊢ 𝑧 |
24 |
20
|
cv |
⊢ 𝑥 |
25 |
16
|
cv |
⊢ 𝑡 |
26 |
22
|
cv |
⊢ 𝑦 |
27 |
13
|
cv |
⊢ 𝑝 |
28 |
23
|
cv |
⊢ 𝑧 |
29 |
26 28 27
|
co |
⊢ ( 𝑦 𝑝 𝑧 ) |
30 |
24 29 25
|
co |
⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) |
31 |
24 26 25
|
co |
⊢ ( 𝑥 𝑡 𝑦 ) |
32 |
24 28 25
|
co |
⊢ ( 𝑥 𝑡 𝑧 ) |
33 |
31 32 27
|
co |
⊢ ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) |
34 |
30 33
|
wceq |
⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) |
35 |
24 26 27
|
co |
⊢ ( 𝑥 𝑝 𝑦 ) |
36 |
35 28 25
|
co |
⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) |
37 |
26 28 25
|
co |
⊢ ( 𝑦 𝑡 𝑧 ) |
38 |
32 37 27
|
co |
⊢ ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) |
39 |
36 38
|
wceq |
⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) |
40 |
34 39
|
wa |
⊢ ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
41 |
40 23 21
|
wral |
⊢ ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
42 |
41 22 21
|
wral |
⊢ ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) |
43 |
19
|
cv |
⊢ 𝑛 |
44 |
43 24 25
|
co |
⊢ ( 𝑛 𝑡 𝑥 ) |
45 |
44 43
|
wceq |
⊢ ( 𝑛 𝑡 𝑥 ) = 𝑛 |
46 |
24 43 25
|
co |
⊢ ( 𝑥 𝑡 𝑛 ) |
47 |
46 43
|
wceq |
⊢ ( 𝑥 𝑡 𝑛 ) = 𝑛 |
48 |
45 47
|
wa |
⊢ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) |
49 |
42 48
|
wa |
⊢ ( ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) |
50 |
49 20 21
|
wral |
⊢ ∀ 𝑥 ∈ 𝑟 ( ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) |
51 |
50 19 18
|
wsbc |
⊢ [ ( 0g ‘ 𝑓 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑟 ( ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) |
52 |
51 16 15
|
wsbc |
⊢ [ ( .r ‘ 𝑓 ) / 𝑡 ] [ ( 0g ‘ 𝑓 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑟 ( ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) |
53 |
52 13 12
|
wsbc |
⊢ [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] [ ( 0g ‘ 𝑓 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑟 ( ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) |
54 |
53 10 9
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] [ ( 0g ‘ 𝑓 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑟 ( ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) |
55 |
7 54
|
wa |
⊢ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] [ ( 0g ‘ 𝑓 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑟 ( ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) |
56 |
55 1 2
|
crab |
⊢ { 𝑓 ∈ CMnd ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] [ ( 0g ‘ 𝑓 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑟 ( ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) } |
57 |
0 56
|
wceq |
⊢ SRing = { 𝑓 ∈ CMnd ∣ ( ( mulGrp ‘ 𝑓 ) ∈ Mnd ∧ [ ( Base ‘ 𝑓 ) / 𝑟 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] [ ( 0g ‘ 𝑓 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑟 ( ∀ 𝑦 ∈ 𝑟 ∀ 𝑧 ∈ 𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) } |