| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csrg | ⊢ SRing | 
						
							| 1 |  | vf | ⊢ 𝑓 | 
						
							| 2 |  | ccmn | ⊢ CMnd | 
						
							| 3 |  | cmgp | ⊢ mulGrp | 
						
							| 4 | 1 | cv | ⊢ 𝑓 | 
						
							| 5 | 4 3 | cfv | ⊢ ( mulGrp ‘ 𝑓 ) | 
						
							| 6 |  | cmnd | ⊢ Mnd | 
						
							| 7 | 5 6 | wcel | ⊢ ( mulGrp ‘ 𝑓 )  ∈  Mnd | 
						
							| 8 |  | cbs | ⊢ Base | 
						
							| 9 | 4 8 | cfv | ⊢ ( Base ‘ 𝑓 ) | 
						
							| 10 |  | vr | ⊢ 𝑟 | 
						
							| 11 |  | cplusg | ⊢ +g | 
						
							| 12 | 4 11 | cfv | ⊢ ( +g ‘ 𝑓 ) | 
						
							| 13 |  | vp | ⊢ 𝑝 | 
						
							| 14 |  | cmulr | ⊢ .r | 
						
							| 15 | 4 14 | cfv | ⊢ ( .r ‘ 𝑓 ) | 
						
							| 16 |  | vt | ⊢ 𝑡 | 
						
							| 17 |  | c0g | ⊢ 0g | 
						
							| 18 | 4 17 | cfv | ⊢ ( 0g ‘ 𝑓 ) | 
						
							| 19 |  | vn | ⊢ 𝑛 | 
						
							| 20 |  | vx | ⊢ 𝑥 | 
						
							| 21 | 10 | cv | ⊢ 𝑟 | 
						
							| 22 |  | vy | ⊢ 𝑦 | 
						
							| 23 |  | vz | ⊢ 𝑧 | 
						
							| 24 | 20 | cv | ⊢ 𝑥 | 
						
							| 25 | 16 | cv | ⊢ 𝑡 | 
						
							| 26 | 22 | cv | ⊢ 𝑦 | 
						
							| 27 | 13 | cv | ⊢ 𝑝 | 
						
							| 28 | 23 | cv | ⊢ 𝑧 | 
						
							| 29 | 26 28 27 | co | ⊢ ( 𝑦 𝑝 𝑧 ) | 
						
							| 30 | 24 29 25 | co | ⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) | 
						
							| 31 | 24 26 25 | co | ⊢ ( 𝑥 𝑡 𝑦 ) | 
						
							| 32 | 24 28 25 | co | ⊢ ( 𝑥 𝑡 𝑧 ) | 
						
							| 33 | 31 32 27 | co | ⊢ ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) | 
						
							| 34 | 30 33 | wceq | ⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) | 
						
							| 35 | 24 26 27 | co | ⊢ ( 𝑥 𝑝 𝑦 ) | 
						
							| 36 | 35 28 25 | co | ⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) | 
						
							| 37 | 26 28 25 | co | ⊢ ( 𝑦 𝑡 𝑧 ) | 
						
							| 38 | 32 37 27 | co | ⊢ ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) | 
						
							| 39 | 36 38 | wceq | ⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) | 
						
							| 40 | 34 39 | wa | ⊢ ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) | 
						
							| 41 | 40 23 21 | wral | ⊢ ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) | 
						
							| 42 | 41 22 21 | wral | ⊢ ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) | 
						
							| 43 | 19 | cv | ⊢ 𝑛 | 
						
							| 44 | 43 24 25 | co | ⊢ ( 𝑛 𝑡 𝑥 ) | 
						
							| 45 | 44 43 | wceq | ⊢ ( 𝑛 𝑡 𝑥 )  =  𝑛 | 
						
							| 46 | 24 43 25 | co | ⊢ ( 𝑥 𝑡 𝑛 ) | 
						
							| 47 | 46 43 | wceq | ⊢ ( 𝑥 𝑡 𝑛 )  =  𝑛 | 
						
							| 48 | 45 47 | wa | ⊢ ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) | 
						
							| 49 | 42 48 | wa | ⊢ ( ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) | 
						
							| 50 | 49 20 21 | wral | ⊢ ∀ 𝑥  ∈  𝑟 ( ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) | 
						
							| 51 | 50 19 18 | wsbc | ⊢ [ ( 0g ‘ 𝑓 )  /  𝑛 ] ∀ 𝑥  ∈  𝑟 ( ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) | 
						
							| 52 | 51 16 15 | wsbc | ⊢ [ ( .r ‘ 𝑓 )  /  𝑡 ] [ ( 0g ‘ 𝑓 )  /  𝑛 ] ∀ 𝑥  ∈  𝑟 ( ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) | 
						
							| 53 | 52 13 12 | wsbc | ⊢ [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] [ ( 0g ‘ 𝑓 )  /  𝑛 ] ∀ 𝑥  ∈  𝑟 ( ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) | 
						
							| 54 | 53 10 9 | wsbc | ⊢ [ ( Base ‘ 𝑓 )  /  𝑟 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] [ ( 0g ‘ 𝑓 )  /  𝑛 ] ∀ 𝑥  ∈  𝑟 ( ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) | 
						
							| 55 | 7 54 | wa | ⊢ ( ( mulGrp ‘ 𝑓 )  ∈  Mnd  ∧  [ ( Base ‘ 𝑓 )  /  𝑟 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] [ ( 0g ‘ 𝑓 )  /  𝑛 ] ∀ 𝑥  ∈  𝑟 ( ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) | 
						
							| 56 | 55 1 2 | crab | ⊢ { 𝑓  ∈  CMnd  ∣  ( ( mulGrp ‘ 𝑓 )  ∈  Mnd  ∧  [ ( Base ‘ 𝑓 )  /  𝑟 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] [ ( 0g ‘ 𝑓 )  /  𝑛 ] ∀ 𝑥  ∈  𝑟 ( ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) } | 
						
							| 57 | 0 56 | wceq | ⊢ SRing  =  { 𝑓  ∈  CMnd  ∣  ( ( mulGrp ‘ 𝑓 )  ∈  Mnd  ∧  [ ( Base ‘ 𝑓 )  /  𝑟 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] [ ( 0g ‘ 𝑓 )  /  𝑛 ] ∀ 𝑥  ∈  𝑟 ( ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) } |