| Step |
Hyp |
Ref |
Expression |
| 0 |
|
css |
⊢ SubSp |
| 1 |
|
vu |
⊢ 𝑢 |
| 2 |
|
cnv |
⊢ NrmCVec |
| 3 |
|
vw |
⊢ 𝑤 |
| 4 |
|
cpv |
⊢ +𝑣 |
| 5 |
3
|
cv |
⊢ 𝑤 |
| 6 |
5 4
|
cfv |
⊢ ( +𝑣 ‘ 𝑤 ) |
| 7 |
1
|
cv |
⊢ 𝑢 |
| 8 |
7 4
|
cfv |
⊢ ( +𝑣 ‘ 𝑢 ) |
| 9 |
6 8
|
wss |
⊢ ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) |
| 10 |
|
cns |
⊢ ·𝑠OLD |
| 11 |
5 10
|
cfv |
⊢ ( ·𝑠OLD ‘ 𝑤 ) |
| 12 |
7 10
|
cfv |
⊢ ( ·𝑠OLD ‘ 𝑢 ) |
| 13 |
11 12
|
wss |
⊢ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) |
| 14 |
|
cnmcv |
⊢ normCV |
| 15 |
5 14
|
cfv |
⊢ ( normCV ‘ 𝑤 ) |
| 16 |
7 14
|
cfv |
⊢ ( normCV ‘ 𝑢 ) |
| 17 |
15 16
|
wss |
⊢ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) |
| 18 |
9 13 17
|
w3a |
⊢ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) |
| 19 |
18 3 2
|
crab |
⊢ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } |
| 20 |
1 2 19
|
cmpt |
⊢ ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } ) |
| 21 |
0 20
|
wceq |
⊢ SubSp = ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } ) |