Step |
Hyp |
Ref |
Expression |
0 |
|
css |
⊢ SubSp |
1 |
|
vu |
⊢ 𝑢 |
2 |
|
cnv |
⊢ NrmCVec |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
cpv |
⊢ +𝑣 |
5 |
3
|
cv |
⊢ 𝑤 |
6 |
5 4
|
cfv |
⊢ ( +𝑣 ‘ 𝑤 ) |
7 |
1
|
cv |
⊢ 𝑢 |
8 |
7 4
|
cfv |
⊢ ( +𝑣 ‘ 𝑢 ) |
9 |
6 8
|
wss |
⊢ ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) |
10 |
|
cns |
⊢ ·𝑠OLD |
11 |
5 10
|
cfv |
⊢ ( ·𝑠OLD ‘ 𝑤 ) |
12 |
7 10
|
cfv |
⊢ ( ·𝑠OLD ‘ 𝑢 ) |
13 |
11 12
|
wss |
⊢ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) |
14 |
|
cnmcv |
⊢ normCV |
15 |
5 14
|
cfv |
⊢ ( normCV ‘ 𝑤 ) |
16 |
7 14
|
cfv |
⊢ ( normCV ‘ 𝑢 ) |
17 |
15 16
|
wss |
⊢ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) |
18 |
9 13 17
|
w3a |
⊢ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) |
19 |
18 3 2
|
crab |
⊢ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } |
20 |
1 2 19
|
cmpt |
⊢ ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } ) |
21 |
0 20
|
wceq |
⊢ SubSp = ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣 ‘ 𝑤 ) ⊆ ( +𝑣 ‘ 𝑢 ) ∧ ( ·𝑠OLD ‘ 𝑤 ) ⊆ ( ·𝑠OLD ‘ 𝑢 ) ∧ ( normCV ‘ 𝑤 ) ⊆ ( normCV ‘ 𝑢 ) ) } ) |