Metamath Proof Explorer


Definition df-ssp

Description: Define the class of all subspaces of normed complex vector spaces. (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)

Ref Expression
Assertion df-ssp SubSp = ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣𝑤 ) ⊆ ( +𝑣𝑢 ) ∧ ( ·𝑠OLD𝑤 ) ⊆ ( ·𝑠OLD𝑢 ) ∧ ( normCV𝑤 ) ⊆ ( normCV𝑢 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 css SubSp
1 vu 𝑢
2 cnv NrmCVec
3 vw 𝑤
4 cpv +𝑣
5 3 cv 𝑤
6 5 4 cfv ( +𝑣𝑤 )
7 1 cv 𝑢
8 7 4 cfv ( +𝑣𝑢 )
9 6 8 wss ( +𝑣𝑤 ) ⊆ ( +𝑣𝑢 )
10 cns ·𝑠OLD
11 5 10 cfv ( ·𝑠OLD𝑤 )
12 7 10 cfv ( ·𝑠OLD𝑢 )
13 11 12 wss ( ·𝑠OLD𝑤 ) ⊆ ( ·𝑠OLD𝑢 )
14 cnmcv normCV
15 5 14 cfv ( normCV𝑤 )
16 7 14 cfv ( normCV𝑢 )
17 15 16 wss ( normCV𝑤 ) ⊆ ( normCV𝑢 )
18 9 13 17 w3a ( ( +𝑣𝑤 ) ⊆ ( +𝑣𝑢 ) ∧ ( ·𝑠OLD𝑤 ) ⊆ ( ·𝑠OLD𝑢 ) ∧ ( normCV𝑤 ) ⊆ ( normCV𝑢 ) )
19 18 3 2 crab { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣𝑤 ) ⊆ ( +𝑣𝑢 ) ∧ ( ·𝑠OLD𝑤 ) ⊆ ( ·𝑠OLD𝑢 ) ∧ ( normCV𝑤 ) ⊆ ( normCV𝑢 ) ) }
20 1 2 19 cmpt ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣𝑤 ) ⊆ ( +𝑣𝑢 ) ∧ ( ·𝑠OLD𝑤 ) ⊆ ( ·𝑠OLD𝑢 ) ∧ ( normCV𝑤 ) ⊆ ( normCV𝑢 ) ) } )
21 0 20 wceq SubSp = ( 𝑢 ∈ NrmCVec ↦ { 𝑤 ∈ NrmCVec ∣ ( ( +𝑣𝑤 ) ⊆ ( +𝑣𝑢 ) ∧ ( ·𝑠OLD𝑤 ) ⊆ ( ·𝑠OLD𝑢 ) ∧ ( normCV𝑤 ) ⊆ ( normCV𝑢 ) ) } )