Metamath Proof Explorer


Definition df-staf

Description: Define the functionalization of the involution in a star ring. This is not strictly necessary but by having *r as an actual function we can state the principal properties of an involution much more cleanly. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion df-staf *rf = ( 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑓 ) ↦ ( ( *𝑟𝑓 ) ‘ 𝑥 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstf *rf
1 vf 𝑓
2 cvv V
3 vx 𝑥
4 cbs Base
5 1 cv 𝑓
6 5 4 cfv ( Base ‘ 𝑓 )
7 cstv *𝑟
8 5 7 cfv ( *𝑟𝑓 )
9 3 cv 𝑥
10 9 8 cfv ( ( *𝑟𝑓 ) ‘ 𝑥 )
11 3 6 10 cmpt ( 𝑥 ∈ ( Base ‘ 𝑓 ) ↦ ( ( *𝑟𝑓 ) ‘ 𝑥 ) )
12 1 2 11 cmpt ( 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑓 ) ↦ ( ( *𝑟𝑓 ) ‘ 𝑥 ) ) )
13 0 12 wceq *rf = ( 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑓 ) ↦ ( ( *𝑟𝑓 ) ‘ 𝑥 ) ) )